

ADDENDUM NO. 1
for
Whalehead Subdivision
Drainage Improvements - Phase VI
January 22, 2026

GENERAL:

1. This Addendum shall supplement, amend, and become a part of the Bid Documents. All Bids and the Construction Contract shall be based on these modifications.
2. Bidders shall acknowledge the receipt of this Addendum on their Form of Proposal.

SPECIFICATIONS:

The following revisions shall be noted by each Bidder in the appropriate specification section of the Bid Documents and made a part thereof:

1. There are no Specifications revisions associated with this Addendum.

DRAWINGS:

The following revisions shall be noted by each Bidder on the appropriate drawing of the Bid Documents and made a part thereof. Corrected Issued For Bid Drawings are issued with this Addendum.

1. Sheet EC101 has been revised to depict the existing fence line along Dolphin Street near the intersection of NC-12 as walked off during M&N's tour of each project site.
2. Sheet TC101 has been revised to depict the existing fence line along Dolphin Street near the intersection of NC-12 as walked off during M&N's tour of each project site. This sheet has also been revised based on NCDOT's preliminary comments that only the use of Drums are warranted for Traffic Control. The precast Concrete Barriers have been removed from use at the intersection of Dolphin Street and Corolla Drive and been replaced with Drums. The Traffic Control Notes, Traffic Control Steps, and Traffic Control Legend have been revised.
3. Sheets TC501 through TC503 have had the Precast Concrete Barrier details removed and replaced to reflect the use of either Drums or Skinny Drums.

ADDITIONAL PROJECT SITE INFORMATION:

After the Pre-Bid Meeting, Moffatt & Nichol (M&N) visited each of the project sites and noted that a new utility has been installed within the subdivision. This new utility is RIPPLE FIBER and M&N has noted pedestals installed at the following intersections: Dolphin & Corolla; Dolphin & Whalehead; and Dolphin & Lighthouse.

This utility is not shown on the survey for this project and by way of this Addendum, the contractor is being advised of its existence. Contractor shall verify the location (horizontally and vertically) of this utility before starting any work at each project site. A photo of the Ripple Fiber pedestal is attached for your reference. The contact phone number on the pedestal is 800-359-5767.

MATERIALS SUBMISSION:

Currituck County received a pump materials submission from Jared Carpenter, a Xylem Sales Representative for Eastern NC, requesting that a FLYGT pump model be considered as an approved equal. After review of the provided pump documentation, the 3HP FLYGT pump model NP 3085 is approved by the Engineer and Currituck County as an approved equal. The pump documentation provided by Jared Carpenter is attached to this Addendum for your reference.

END OF ADDENDUM NO. 1

ATTACHMENTS:

- Minutes from the January 14, 2026 Pre-Bid Meeting
- Pre-Bid Meeting Attendee List
- Photo of Ripple Fiber pedestal from January 14, 2026
- Revised “Issued For Bid” plan sheets EC101 and TC101, and detail sheets TC501 through TC503.
- FLYGT pump documentation for 3HP model NP 3085

PRE-BID MEETING MINUTES
for
Whalehead Subdivision
Drainage Improvements - Phase VI
Held at Bonito Street Public Beach Parking Lot near the Project Sites
located at
927 Whalehead Drive
Corolla, NC 27927
January 14, 2026 at 11:00 am to 11:30 am

LIST OF MEETING ATTENDEES:

The following individuals were in attendance at the project Pre-Bid Meeting. A copy of the sign-in sheet that was distributed during the meeting can be found as an attachment to these minutes.

<u>ATTENDEE</u>	<u>REPRESENTING</u>	<u>PHONE</u>	<u>EMAIL</u>
Kevin Zdeb	Moffatt & Nichol (M&N) Project Manager	(919) 781-4626 (O) (984) 239-2775 (D)	kzdeb@moffattnichol.com
Brad Haertling	Moffatt & Nichol (M&N) Assistant Project Manager	(919) 781-4626 (O) (919) 334-7964 (D)	bhaertling@moffattnichol.com
David Spence	Currituck County	(252) 232-2769 (P)	Dave.Spence@CurrituckCountyNC.gov
Eli Burge	Currituck County	(252) 232-2769 (P)	Elisha.Burge@CurrituckCountyNC.gov
Trischa Quinlan	Currituck County	(252) 232-6073 (P)	Trischa.Quinlan@CurrituckCountyNC.gov
Jared Carpenter	Xylem (Sales Rep)	(980) 579-2395 (M)	Jared.Carpenter@Xylem.com
Travis Swain	Fred Smith Company	(252) 722-3044 (M)	TSwain@FredSmithCompany.net
Nathaniel Hatchell	Hatchell Concrete	(252) 473-6074 (O)	HCI@HatchellConcrete.com
Taylor Barfield	Grizzly Underground	(757) 779-5704 (M)	Taylor@GrizzlyUU.org

ITEMS DISCUSSED:

1. Introductions of all parties in attendance and everyone filled out the Attendee Sign-in Sheet [provided by Currituck County](#).
2. The Notice to Bidders indicates how the plans, specifications, and contract documents may be obtained or viewed. Electronic versions of the documents were made available to the prospective contractors via email sent out by Currituck County on Tuesday December 30, 2025. Complete plans and specifications in digital (pdf) format can be obtained from Trischa Quinlan, Contracts & Purchasing Agent, via email request at Bids@CurrituckCountyNC.gov . [This email address has been corrected.](#)
3. Contractors are reminded that the contract documents (Notice to Bidders) call for the general contractor to be licensed in the State of **North Carolina** with one of the following classifications:
 - A. Unclassified Contractor
 - B. Highway Contractor
 - C. Public Utilities Contractor
 - D. Specialty Contractor – designated Water Lines and Sewer Lines construction
4. Sealed bids will be received by Currituck County until **11:00am**, Eastern Standard Time (EST), on **February 5, 2026** and immediately thereafter publicly opened and read at the Currituck County Court House. Currituck County will only accept contractor bids via mail and hand delivery up until that time. Any bid proposals received after 11:00am will **NOT** be accepted or reviewed. No emailed or faxed bids will be received. This project is bid as a single prime contract only. Contractors shall submit their bid proposals in a sealed envelope addressed to the County of Currituck and clearly indicate the following on the envelope:
 - A. "SEALED BID ENCLOSED – WHALEHEAD SUBDIVISION DRAINAGE IMPROVEMENTS - PHASE VI"
 - B. The Bidder's name and addressA Bidder shall submit its Bid as indicated in the Notice to Bidders utilizing a two-envelope system.

Envelope One will contain the bid security only and should include "Bid Security" on the face of the envelope. Envelope Two will include the Bid Form and any other documents required to be submitted with the bid. Both envelopes shall be sealed separately.

Envelope One and Envelope Two shall be placed in a sealed envelope with the notation "SEALED BID ENCLOSED" and addressed to the County of Currituck. The project name, and the Bidder's name and address should also be identified on the face of the envelope.

Bids shall be submitted by the date and time and at the place specified in the Notice to Bidders. Bids received after the date and time specified will not be accepted. The Bidder assumes full responsibility for timely delivery.

5. The award of the contract will be based on the **LUMP SUM BASE BID PRICE** as noted on the Bid Form. The County may choose to award only Base Bid #1 or only Base Bid #2 or both Base Bids. Base Bid #1 – Dolphin Street is the sum of the Total Lump Sum Price (items 1 through 18) as indicated on the Bid Form. Base Bid #2 – Coral Street is the sum of the Total Lump Sum Price (items 19 through 45) as indicated on the Bid Form. The Total Lump Sum Price for both Base Bids is the sum of Base Bid #1 and Base Bid #2 as indicated on the Bid Form.
6. It is anticipated that all contract approvals and execution of contract documents will be completed in a timely manner between Currituck County and the awarded Contractor. A **Notice to Proceed** is expected to be issued by **mid to late March 2026**.
7. The project work must be completed **BEFORE May 1, 2026 or AFTER September 14, 2026**. No work on-site may be conducted in between these dates. The contractor has 365 calendar days to complete both project sites from the Owner's written Notice to Proceed.
8. A cash deposit or bid bond in the amount of 5% of the bid shall accompany the formal proposal. The selected contractor will be required to furnish a performance bond and payment bond in the amount of 100% of the contract price. This information may also be found in the Notice to Bidders section of the contract documents.
9. No bid may be withdrawn after the scheduled closing time for receipt of bids for a period of 30 days.

10. All bidders must meet the licensing requirements under Chapter 87 of the N.C. General Statutes. Minority Owned Businesses, Small Business Entities, Women Owned Businesses, Veteran and Service-Disabled Veteran Owned Businesses are encouraged to submit bids.
11. Material lay-down area and equipment storage area for the Contractor will be the northern portion of the Bonito Street Public Beach Parking Lot utilizing the entrance on Whalehead Drive for access. Contractor shall provide temporary fencing and gate for access and delineation of the lay down area. The southern portion of the parking lot with access from Bonito Street shall remain open and undisturbed for public use and County access to the existing Lift Station.
12. The contractor will be responsible for furnishing, at his own expense, all necessary potable water, electrical power, and sanitary facilities. Metered connections to the local potable water utilities (Currituck County) may be available upon request.
13. Discussed a brief overview of the key elements of the project discussing the purpose, materials, installation, and sequence of the project.
 - A. Purpose of the project. There are two (2) project sites to be addressed under this contract. Site 1 – Dolphin Street: The existing 6-inch Force Main shall be upsized to an 8-inch force main for increased capacity. Site 2 – Coral Beach Walk at Lighthouse Drive – a Drain Inlet and Lift Station with a 4-inch force main shall be installed to address the localized flooding issue.
 - B. If the Contractor is awarded both project sites, Project Site 1 shall be the priority and completed first.
 - C. All work for Site 1 shall be conducted within the R/W limits of Dolphin Street. Traffic Control shall be installed as shown on the plans and utilize Flaggers as needed. NCDOT has reviewed and provided feedback regarding traffic control devices noting that the Precast Concrete Barriers (PCB's) are not warranted and only require the use of Drums. Traffic-rated steel plates shall be installed over the open bore pits at the end of each workday. The Traffic Control plan and Detail Sheets have been revised and will be issued as an Addendum.
 - D. Site 1 – Dolphin Street: The proposed 8-inch fusible HDPE force main shall be installed by HDD. Open bore pits are required at each end to conduct pilot drill and pull back of pipe as well as tie-ins to the existing pipe. Pipe assembly shall be conducted within the R/W of Dolphin Street between Corolla Drive and NC-12.
Discussed that the existing fence along Dolphin Street near the intersection of NC-12 may be in the Dolphin Street R/W and in conflict with pipe assembly. If contractor

finds the fence is in conflict with operations - contractor has the option to remove, store, and then replace the fence in its original location after work is completed.

Contractor shall verify the size and material type of existing 6-inch force main connection to the larger force main in Corolla Drive before ordering materials.

Leakage testing of the assembled force main. Currituck County confirmed during the meeting that the existing Force Main along Corolla Drive is 14" O.D. HDPE with a DR of 9. Contractor will need to verify the existing 14" fitting type and material type of the fitting for the existing 6" Force Main connection and coordinate with Currituck County and Engineer prior to ordering any pipe materials.

- E. All work for Site 2 shall be conducted within the R/W limits of Coral Street between Lighthouse Drive and Whalehead Drive and a portion of the Lighthouse Drive R/W. Traffic Control shall be installed as required and utilize Drums and Flaggers as needed along Lighthouse Drive and/or Whalehead Drive.
- F. Site 2 – Coral Street: A drain inlet and 15-inch HDPE gravity pipe shall be installed within the R/W of Lighthouse Drive to collect localized flooding. The drainage pipe shall connect to a Lift Station installed outside of the Lighthouse Drive R/W and within the old Coral Street R/W. Lift Station shall pump stormwater via a 4-inch fusible HDPE force main to a flow dissipation structure in the existing infiltration pond. Demolition of existing driveway and construction of new concrete driveway. Installation of a back-up generator and electrical pad. Extension of Dominion Energy electrical service to electrical pad. Coordination with Dominion Energy. Leakage testing of the installed force main and start up testing of the Lift Station. Installation of landscaping and fencing. Relocation of existing boulders that line the existing driveway and frontage along Lighthouse Drive.
- G. Contractor is responsible for all construction surveying and verifying the location of all existing utilities within both project sites. Contractor is responsible for the repairs to all damaged utilities during construction.
- H. Contractor is responsible for the repairs to all damage caused to private property during construction.
- I. Installation of Silt Fence around HDD bore pits as noted on the plans. Tree fencing shall be installed to delineate work areas.
- J. Clearing and grubbing of the work areas to allow for construction.
- K. Repairs and restoration of the Bonito Street Beach Access Parking Lot.
- L. Installation and removal of temporary erosion control methods.
- M. Seeding and mulching of the disturbed area once construction and testing has been completed.

14. The deadline for contractors to submit concerns and/or questions about this project is **January 22, 2026 at 5:00pm**. All contractor questions shall be submitted in writing via email to Trischa Quinlan, Contracts & Purchasing Agent (Bids@CurrituckCountyNC.gov). Formal responses to questions and any required project addendum will be provided to all known contractors via email by **January 28, 2026 at 5:00pm**.
15. Contractors were given the opportunity to discuss any questions they have about the project. All Contractors declined to ask questions at this time.
16. Invited all contractors to visit the project sites with the Designer and Owner representatives. All Contractors declined the site visit.
17. Discussed that the contractor is responsible for locating existing monuments and property pins to establish the existing R/W lines at both project areas.
18. Addendum #1 will be issued with these meeting minutes & attendee list and the revised traffic control plan and detail sheets.

END OF PRE-BID MEETING MINUTES

ATTACHMENTS:

- Pre-Bid Meeting Attendee List

CONTRACTOR SIGN-IN SHEET

County of Currituck

153 Courthouse Road
Currituck, North Carolina 27929

PRE-BID MEETING – CONTRACTOR SIGN-IN SHEET

Date: January 14, 2026

Time: 11:00 am

Project: Whalehead Subdivision Drainage Improvements- Phase VI

Name	Company	Phone Number	Email
Matthew Hatchell	HCI	252-473-6074	HCI@hatchellconcrete.com
Travis Swain	FSC	252-722-3044	TSwain@FrogsSmithCompany.net
Jared Carpenter	Flyst/Xylem	980-579-2395	Jared.Carpenter@xylem.com
Taylor Barfield	Grizzly Underground	757-779-6704	Taylor@GrizzlyUU.org
KEVIN Zeb	Moffat & Nichol		KZeb@ moffatnichol.com
SEAN Hartley	"	"	SHartley@ moffatnichol.com

DOLPHIN
ST

1

2

3

4

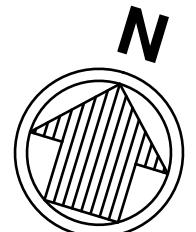
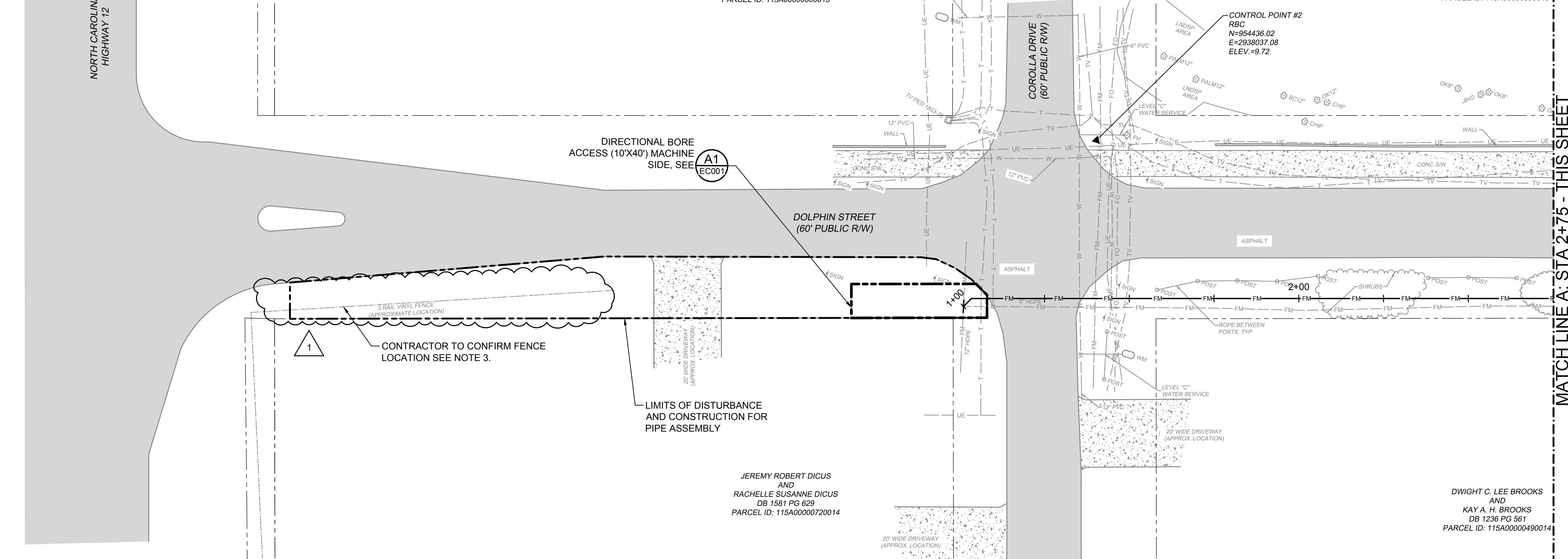
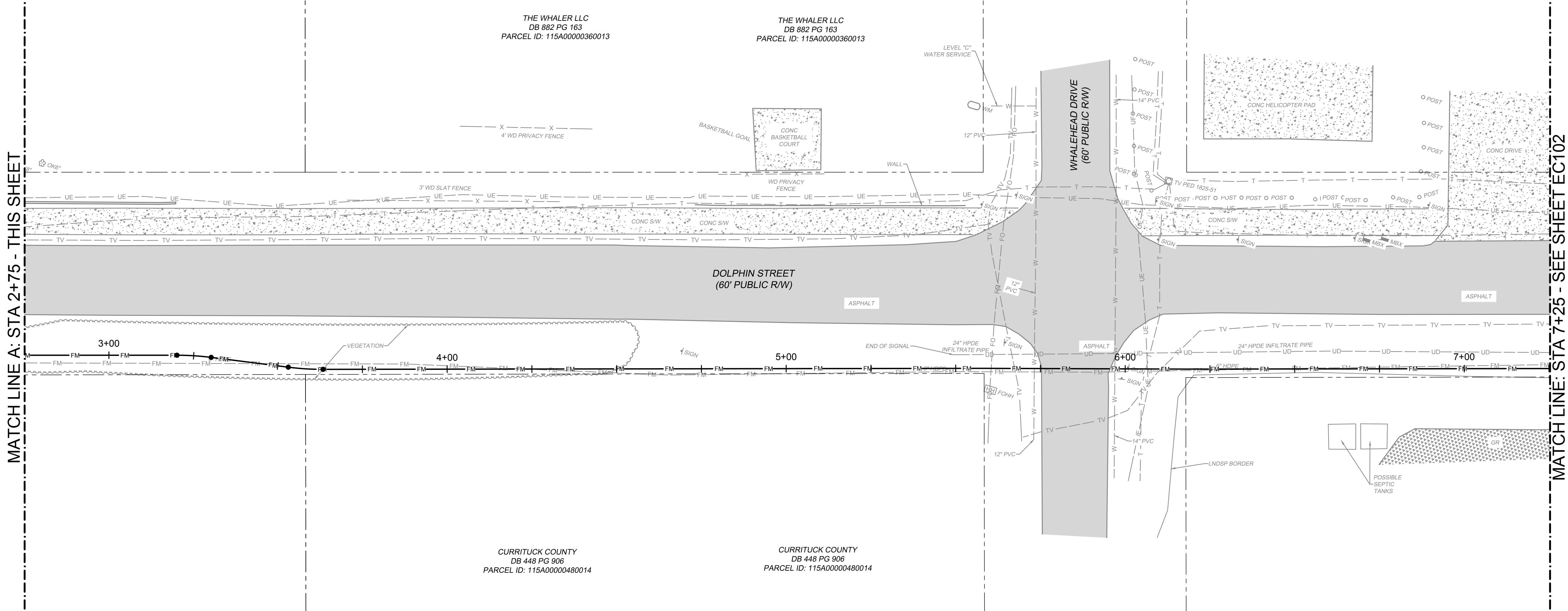
5

6

E

D

C




B

A

MATCHLINE A: STA 2+75 - THIS SHEET

NORTH CAROLINA
HIGHWAY 12CURRITUCK COUNTY
DB 448 PG 906
PARCEL ID: 115A00000480014CURRITUCK COUNTY
DB 448 PG 906
PARCEL ID: 115A00000480014

TOTAL DISTURBANCE AREA (THIS SHEET) - DOLPHIN STREET: 0.0757 ACRE

NOTES

- SEE CONSTRUCTION PLAN SHEETS C-101 & C-102.
- ROAD SHALL BE KEPT FREE FROM SOIL AND DEBRIS. SWEEP ROADS CLEAN DAILY AT THE END OF THE WORK DAY.
- IF EXISTING FENCE IS LOCATED WITHIN THE ROAD RIGHT-OF-WAY AND WILL HINDER THE PIPE ASSEMBLY THE CONTRACTOR SHALL NOTIFY THE COUNTY. UPON RECEIVING APPROVAL THE CONTRACTOR SHALL REMOVE AND STORE THE EXISTING FENCE. ONCE CONSTRUCTION HAS BEEN COMPLETED THE CONTRACTOR SHALL REINSTALL STORED FENCING.

LEGEND OF EXISTING FEATURES

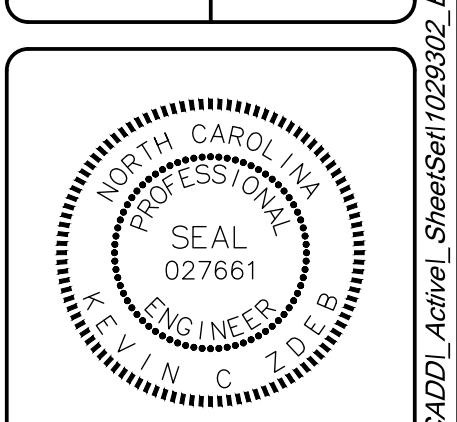
— W —	PROPERTY / RIGHT OF WAY LINE
— W —	WATER LINE
— T —	U/G TELEPHONE
— TV —	U/G CABLE TV
— FO —	FIBER OPTIC
— UE —	U/G ELECTRIC
— FM —	STORM FORCE MAIN
— — — — —	STORM PIPE
— UD —	STORM INFILTRATION PIPE
— X —	FENCE
— — — — —	MAJOR CONTOUR
— — — — —	MINOR CONTOUR
X 6.9	SPOT ELEVATION
*	TREE
◎ WM	BUSH
◎ WV	WATER METER
◎ FH	WATER VALVE
□ TV	FIRE HYDRANT
□ PE	TV PEDESTAL
□ PE	TELEPHONE PEDESTAL
↑ SIGN	SIGN
◎ SM	STORM MANHOLE
☒ EV	ELECTRIC VAULT OR GENERATOR

EXISTING TREE ABBREVIATIONS

CD	CEDAR
CH	CHERRY
CM	CRAPÉ MYRTLE
OK	OAK
ORN	ORNAMENTAL
PN	PINE

LEGEND OF PROPOSED FEATURES

FM	STORM FORCE MAIN
9.5	SPOT ELEVATION
□	SURFACE WATER LIFT STATION
▽	PIG LAUNCH
△	REDUCER
☒	GATE VALVE
□	DETECTION WIRE MANHOLE
□	AIR RELEASE VALVE
☒	FLOW DISSIPATION STRUCTURE
□	DROP INLET
□	FLOW DISSIPATION STRUCTURE
— SF —	TEMPORARY SILT FENCE

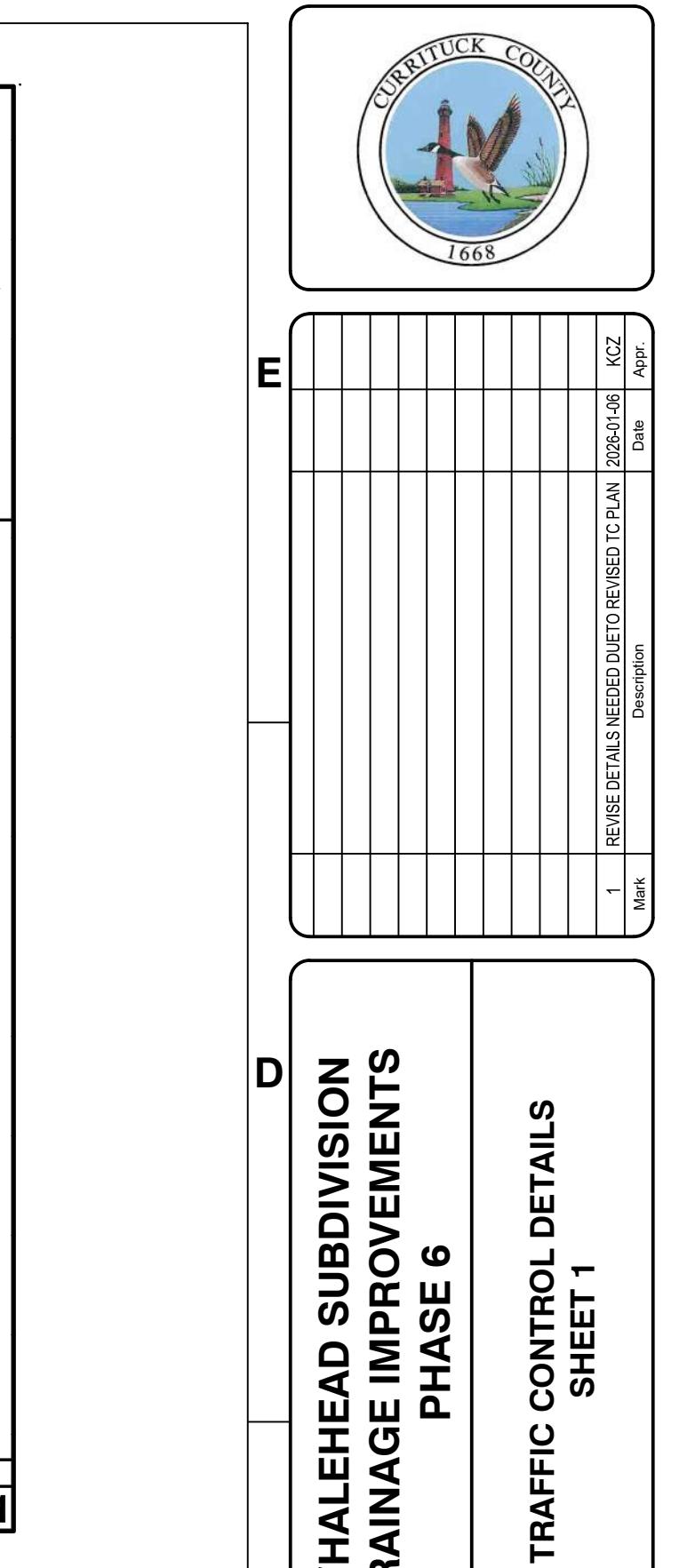
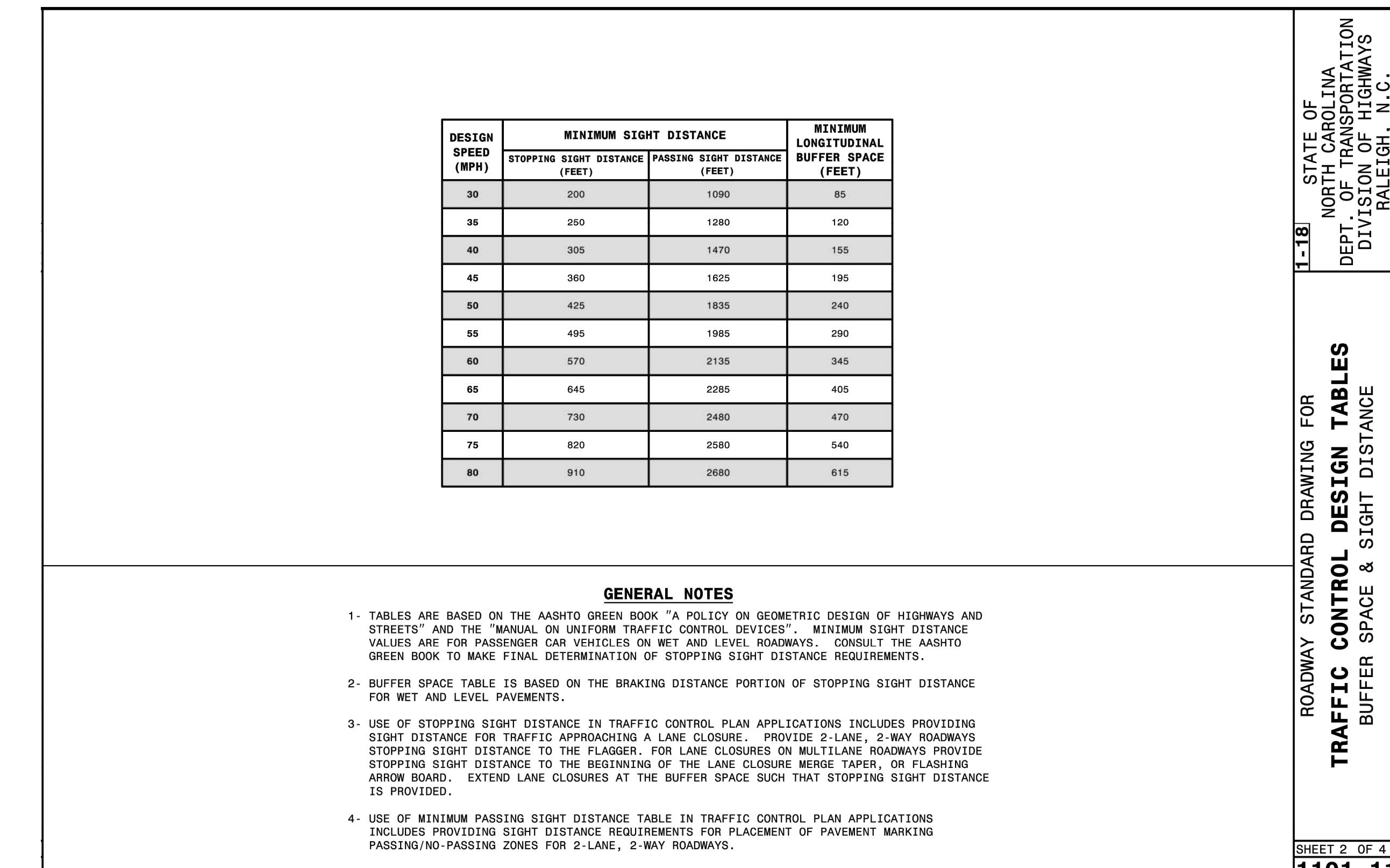
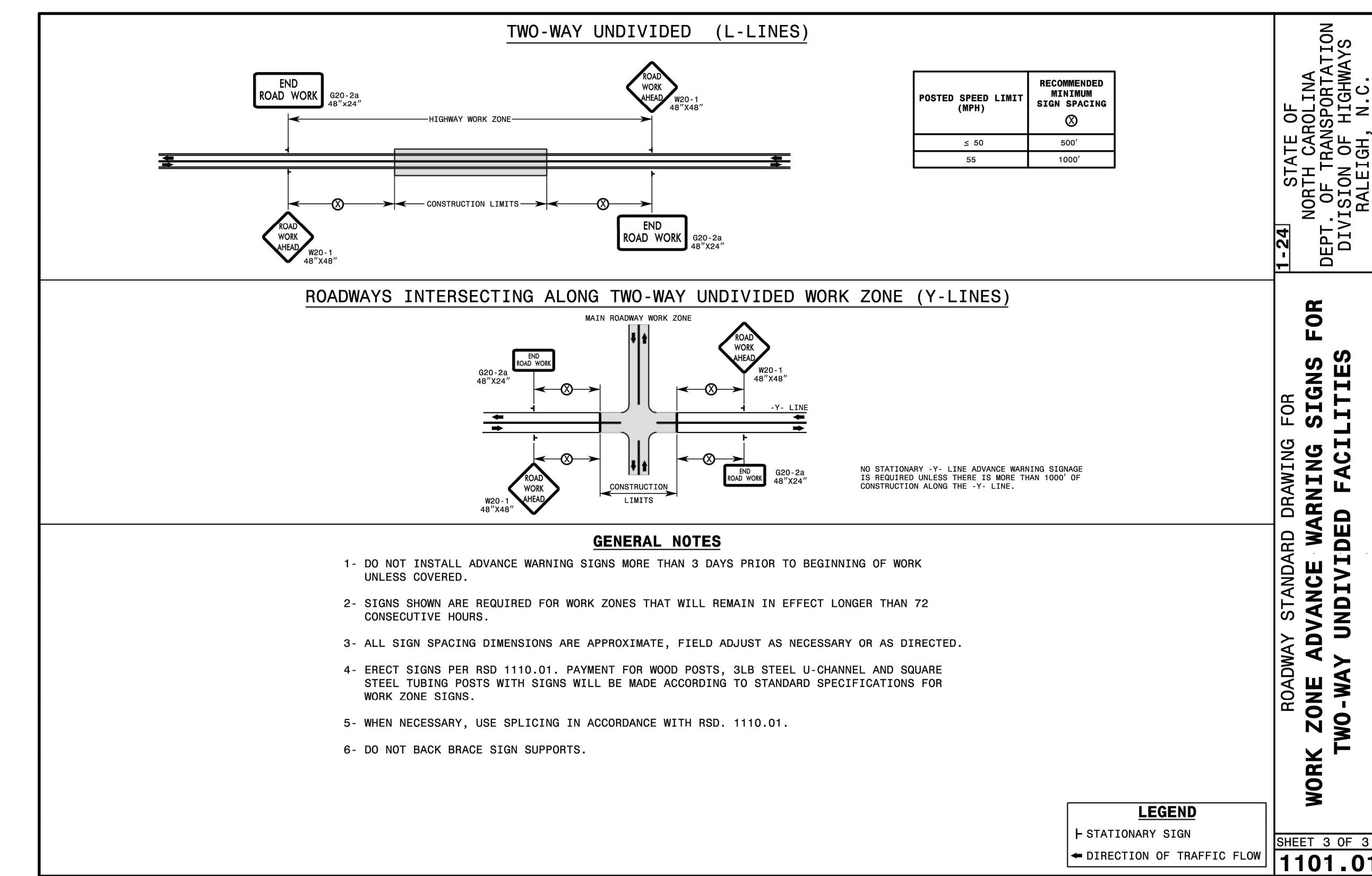
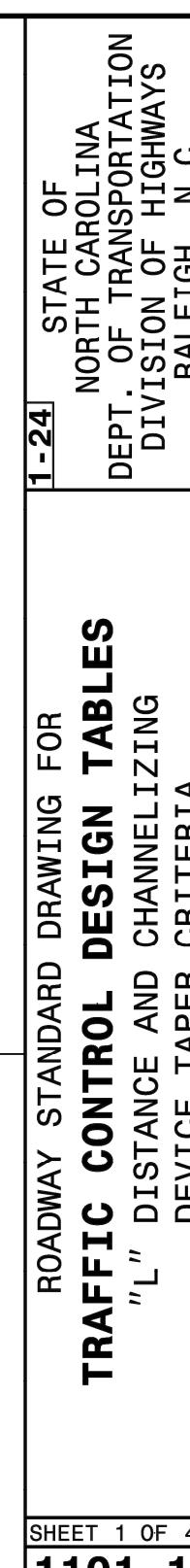
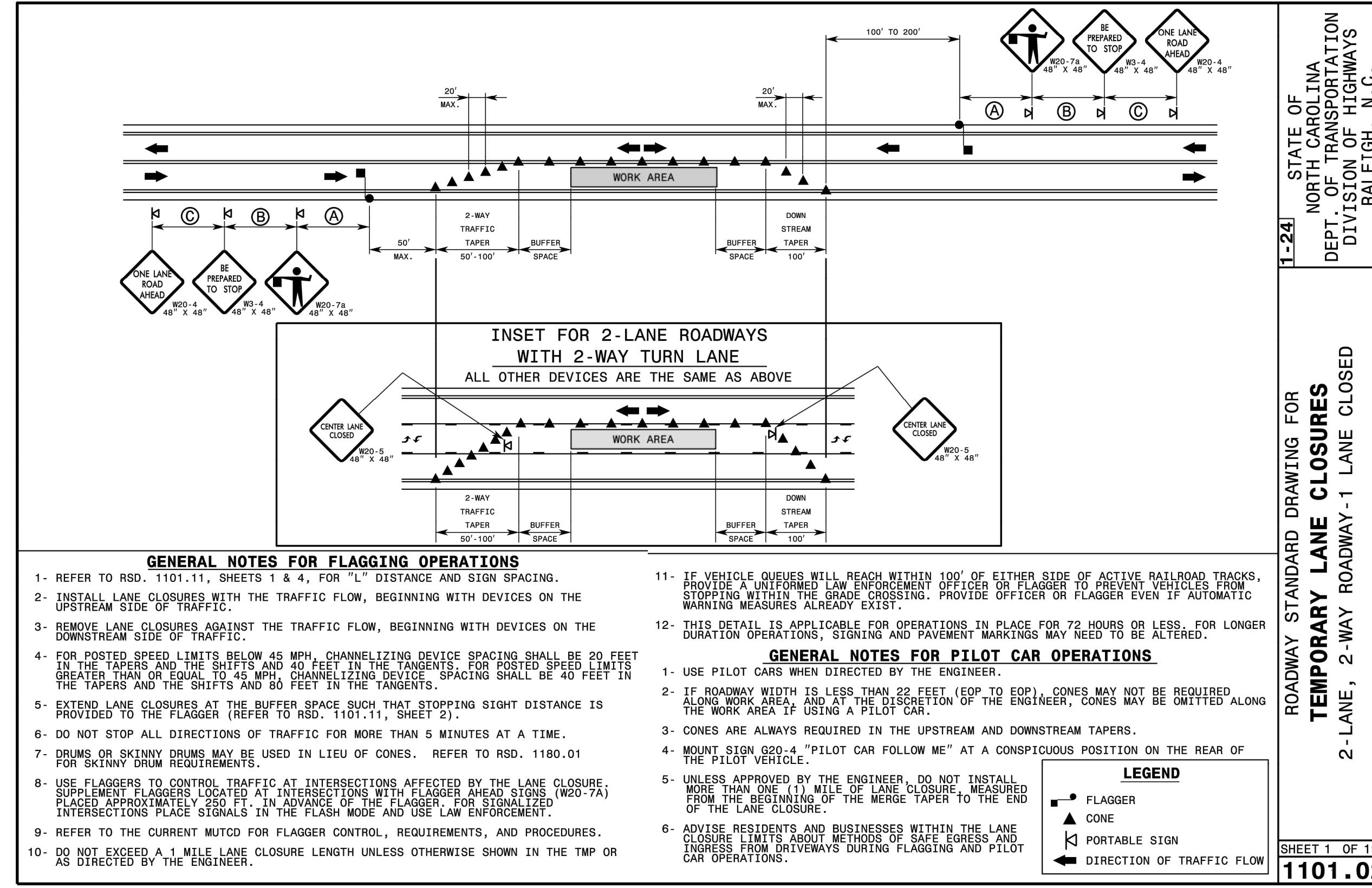

4700 FALLS OF NEUSE RD RALEIGH, NC 27609 919-784-6266 WWW.MOFFATTNICHOL.COM	Designed by: YHS	Date: NOVEMBER 2025	Rev: 1
moftatt & nichol	Drawn by: DK	Checked by: KCZ	MAN Project No: 10283-02
Reviewed by:		Drawing date:	
Submitted by: MOFFATT & NICHOL		Drawing Scale: AS NOTED	

1	REVISED EXISTING FENCE LOCATION	Date: 01/19/2026
Mark	Mark	Mark

1	1	1	1
REVISED FENCE LOCATION	Mark	Mark	Mark
Mark	Mark	Mark	Mark

1	1	1	1
REVISED FENCE LOCATION	Mark	Mark	Mark
Mark	Mark	Mark	Mark

Sheet Reference No. EC101
INDEX: 5 OF 28






E

D

C

B

A

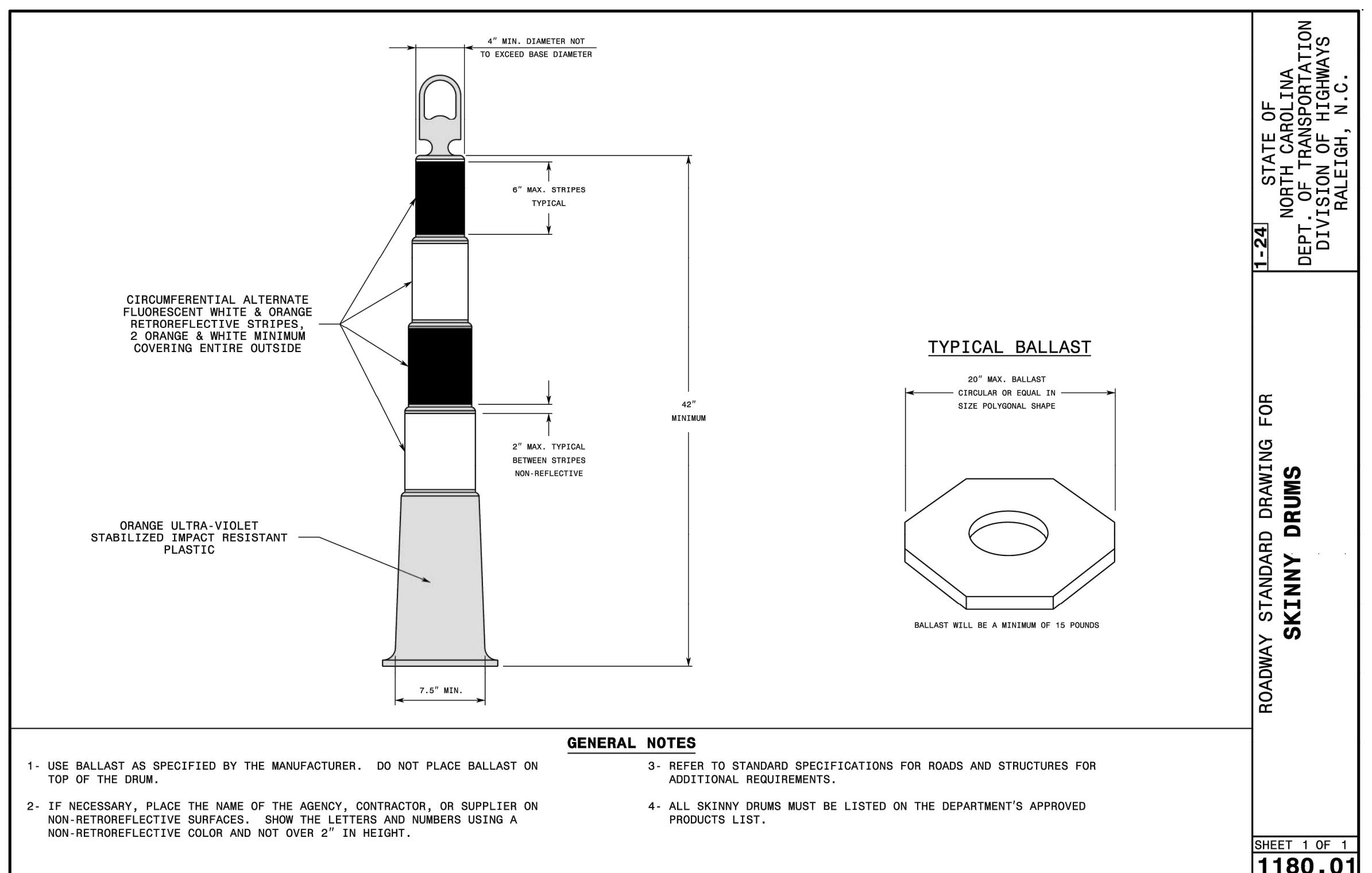
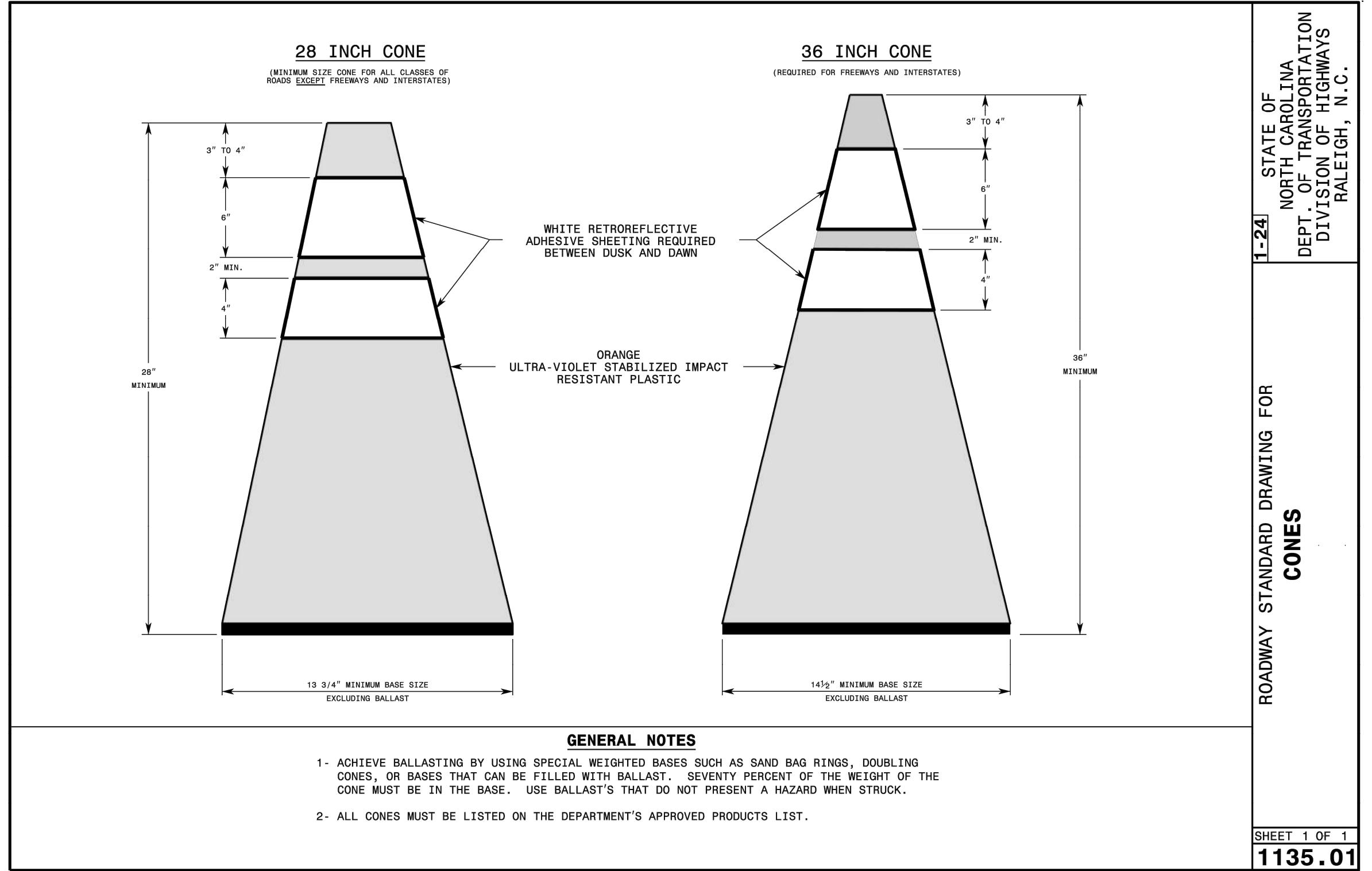
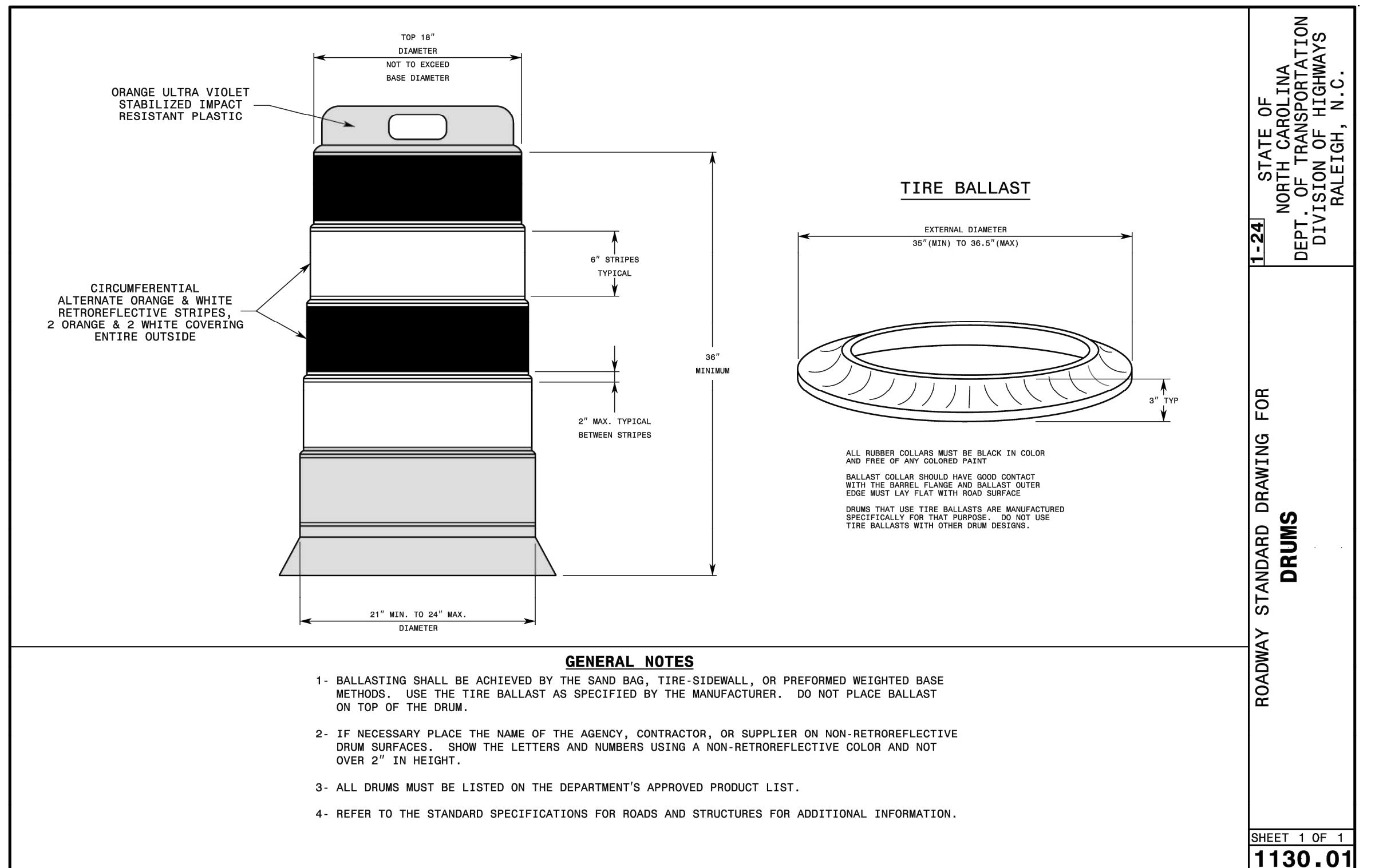
1 2 3 4 5 6

E

1

C

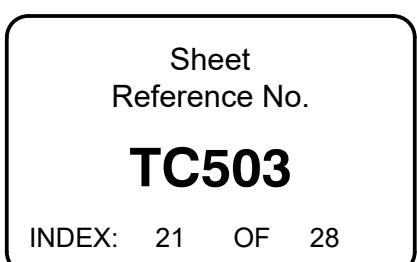
B




A

E

1

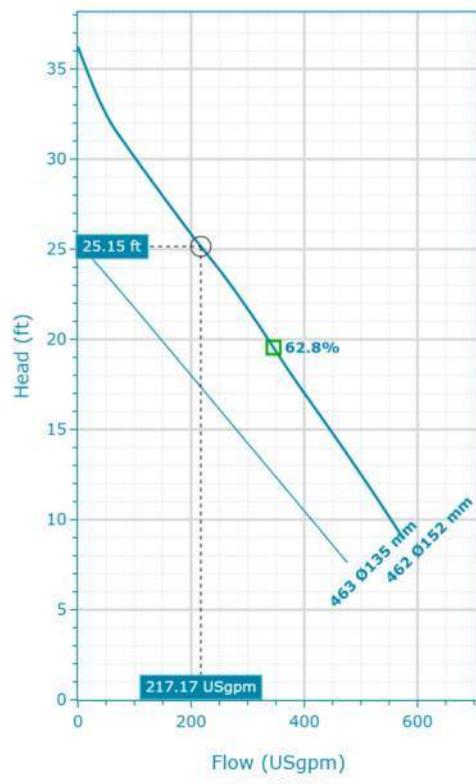
C


A

NOTES:

1. STANDARD DRAWINGS ARE PROVIDED FOR INFORMATION ONLY. MOFFATT & NICHOL ASSUMES NO RESPONSIBILITY OF DESIGN OR CORRECTNESS OF THE DRAWING.
2. CONTRACTOR SHALL VERIFY ALL STANDARDS ARE THE LATEST VERSION AVAILABLE FROM THE DESIGNATED AGENCY.

ISSUED FOR BID:
2025-12-22
DO NOT USE FOR CONSTRUCTION


NP 3085 MT 3~ ADAPTIVE 462

Created On: 1/8/26

NP 3085 MT 3~ Adaptive 462 | Configuration Summary

Flygt's self-cleaning non-clog N-pumps feature innovative designs and functions that deliver high sustained efficiency and the most reliable operation. This makes them the most reliable choice available for a broad range of wastewater applications for tough applications such as unscreened sewage, wastewater and sludge up to an 8 percent solids concentration. Impeller material available in Hardened cast Iron, Hard Iron and Stainless Steel to fit any wastewater application.

Nominal (mean) data shown. Under- and over-performance from this data should be expected due to standard manufacturing tolerances. Please consult your local Flygt representative for additional performance guarantees.

GENERAL

Explosion Proof	Max. Pumped Media Temp.
Yes	104 °F
Approval	Impeller Diameter
FM	152 mm

MATERIAL AND COATING

Impeller Material	Stator Cover Material
Hard-Iron	Grey Cast Iron
Volute Material	
Grey Cast Iron	

MOTOR

Rated Voltage	Motor Efficiency Class
208 V	Standard
Coupling	Rated Power
Y	3 Hp

INSTALLATION

Installation Type
P - Semi-Permanent, Wet

NP 3085 MT 3~ Adaptive 462 | Product Details

Description

N 3085

Wastewater N-Technology Pump With Adaptive N® Impeller

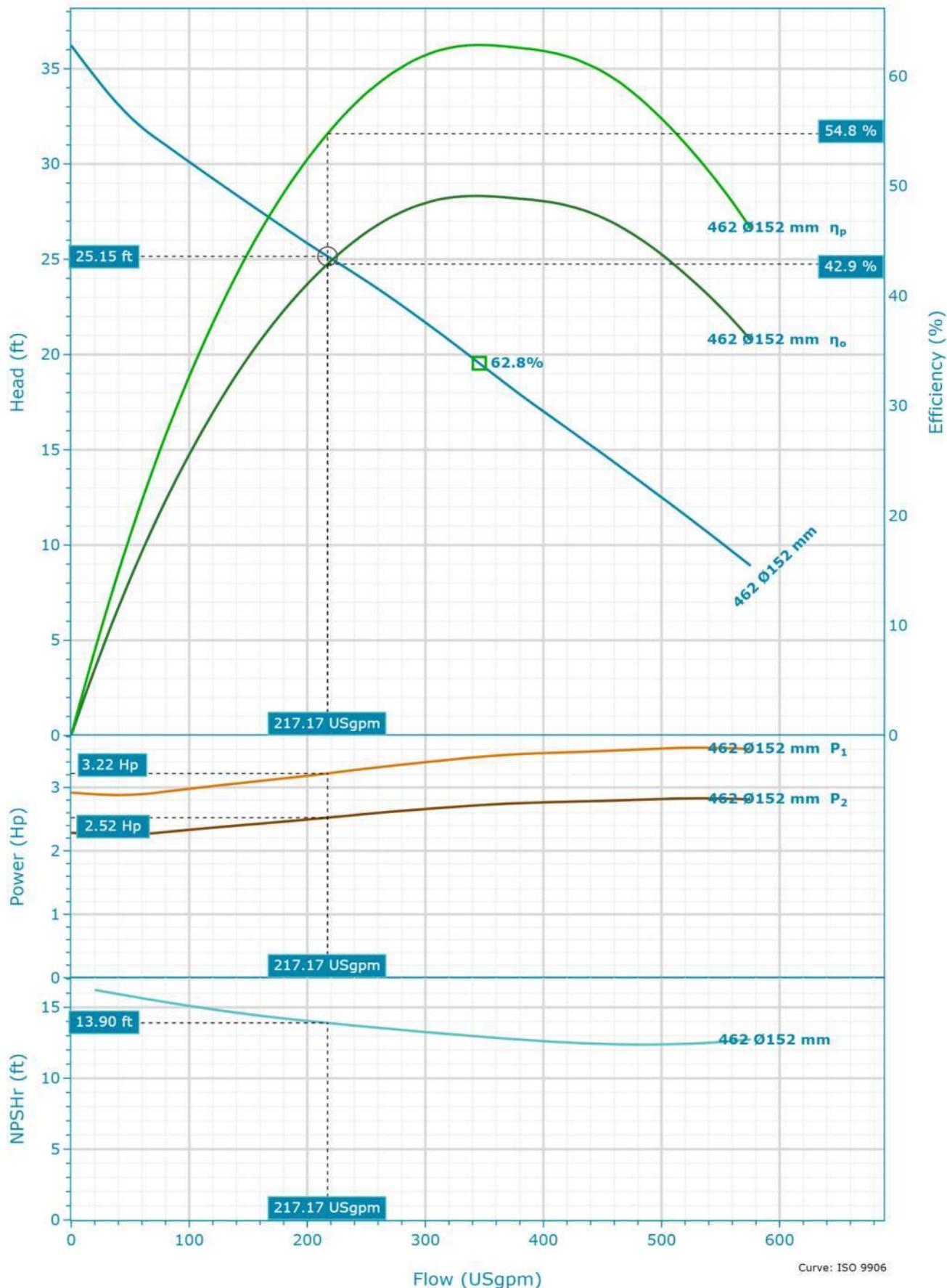
Flygt N-pumps take on the toughest applications and get the job done. Every component is designed and manufactured to deliver sustained high efficiency. Thanks to patented N-technology with its innovative self-cleaning impeller, Flygt N-pumps deliver the highest total efficiency. They lower your energy bill and reduce unplanned maintenance costs. That adds up to total peace of mind – and big savings over the long term. Most solid objects entering the pump will pass through the impeller between the impeller vanes. If an object gets caught on the leading edge of one of the vanes, it will slide along the backswept shape towards the perimeter of the inlet. Due to the mechanical self-cleaning design, a sludge concentration up to 8% can easily be pumped.

Flexible and Modular Design

- This self-cleaning pump features innovative functions that make it the best choice for a broad range of applications. The modular hydraulic design enables you to tailor the hydraulics to meet the requirements of virtually any application.
- Replaceable wear ring in two materials, gray iron or Hard-Iron, for different operation conditions
- Hardened gray iron impeller for typical wastewater applications
- Hard-Iron impeller for abrasive and corrosive applications
- Stainless steel impeller for special applications that require duplex stainless steel
- Short shaft overhang reduces shaft deflection and increases seal and bearing life
- Motor designed for submersible use. Heat is concentrated to the stator core for improved cooling properties
- The double mechanical seal system consists of two sets of mechanical shaft seals that work independently to provide double security. Available in Tungsten carbide (WCC) or Silicon carbide (SiC) depending on pumped media.
- Griploc mechanical face seal system secures locking to the shaft, no rubber friction, no grub screws and no shaft damage
- Motor cable SUBCAB® specially developed for submersible use.

Product Features

- Sustained high efficiency
- Hardened cast iron, optional Duplex stainless steel and Hard-Iron impellers
- State-of-the-art wastewater pump with enhanced Adaptive N® hydraulic
- Sustained high efficiency with energy savings up to 25%
- Flexible and modular design
- Robust and reliable


Construction Materials

Impeller Material	Volute Material	Stator Cover Material
Hard-Iron	Grey Cast Iron	Grey Cast Iron

Motor

Rated Power	Number Of Phases	Start Current Ratio	Motor Issue
3 Hp	3	5.45	10
Motor Denomination	Rated Motor Speed	Insulation Class	Locked Rotor Code
15-10-4AL	1,700 RPM	H	H
Motor Efficiency Class	Rated Voltage	Approval	Max starts per hour
Standard	208 V	FM	30
Version Code	Rated Current	Total moment of inertia	Power Factor 100%
070	9.6 A	0.48 ft ² lbf	0.83
Frequency	Start Current	Type of duty	Power Factor 75%
60 Hz	53 A	S1	0.77
Max P2 (1x)	Starting Current, Direct Starting	Stator Variant	Power Factor 50%
2.83 Hp	53 A	68	0.66
Number Of Poles	Starting Current, Star Delta	Motor Module	Efficiency 100%
4	17.67 A	147	77.8 %
			Efficiency 75%
			78.9 %
			Efficiency 50%
			77.3 %

NP 3085 MT 3~ Adaptive 462 | Hydraulic Data & Performance Curve

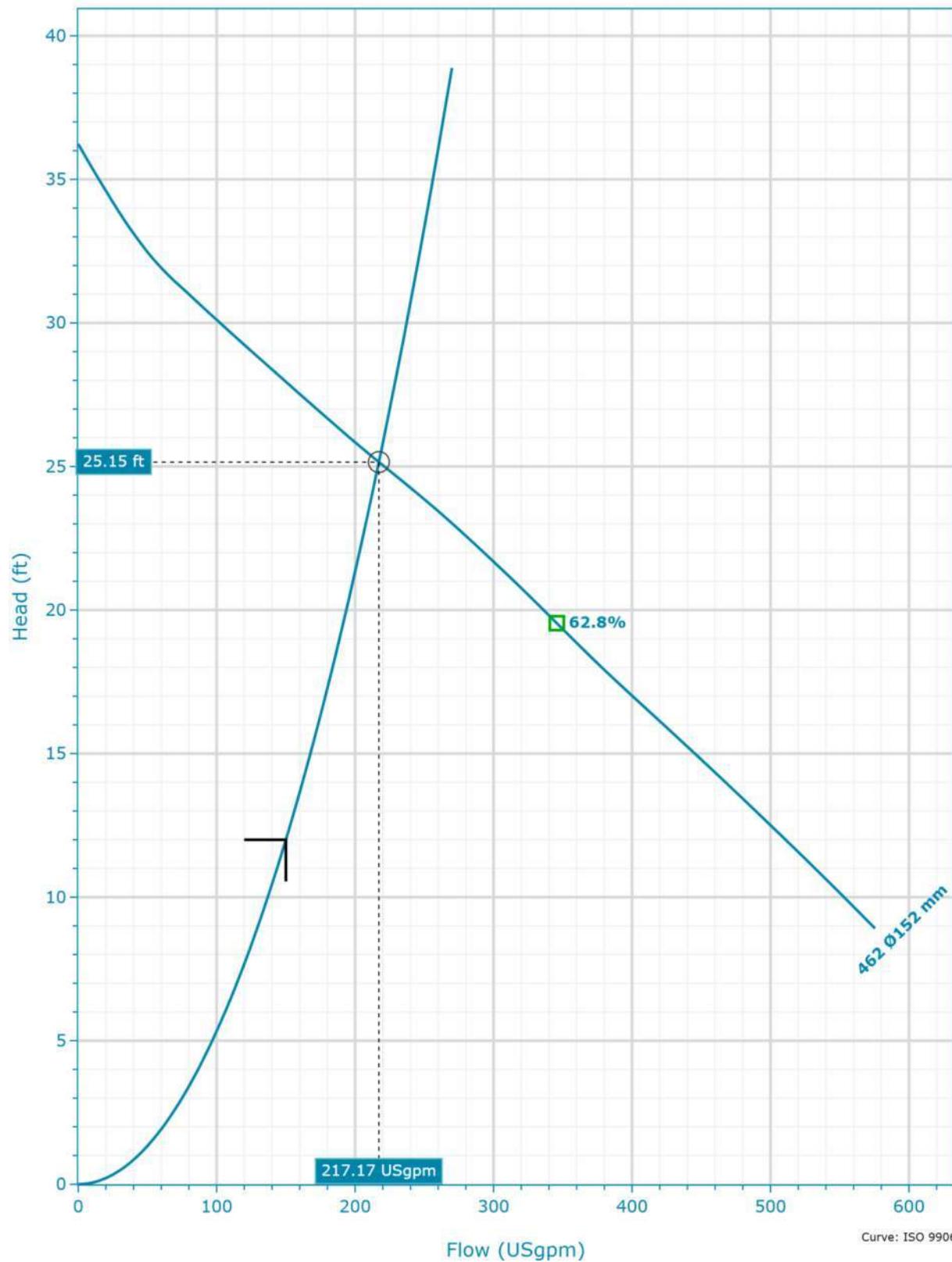
Nominal (mean) data shown. Under- and over-performance from this data should be expected due to standard manufacturing tolerances. Please consult your local Flygt representative for additional performance guarantees.

Selection

Series	Curve Code
N 3000	462
Name	Impeller Diameter
NP 3085 MT 3~ Adaptive 462	152 mm
Frequency	Inlet Diameter
60 Hz	100 mm
Total Flow	Outlet Diameter
150 USgpm	3 in
Total Head	Number Of Vanes
12 ft	2
Pump Flow	
150 USgpm	
Pump Head	
12 ft	
System Type	
Single Pump	
Operating Pumps	
1	
Standby Pumps	
No Standby Pump	

Design Point

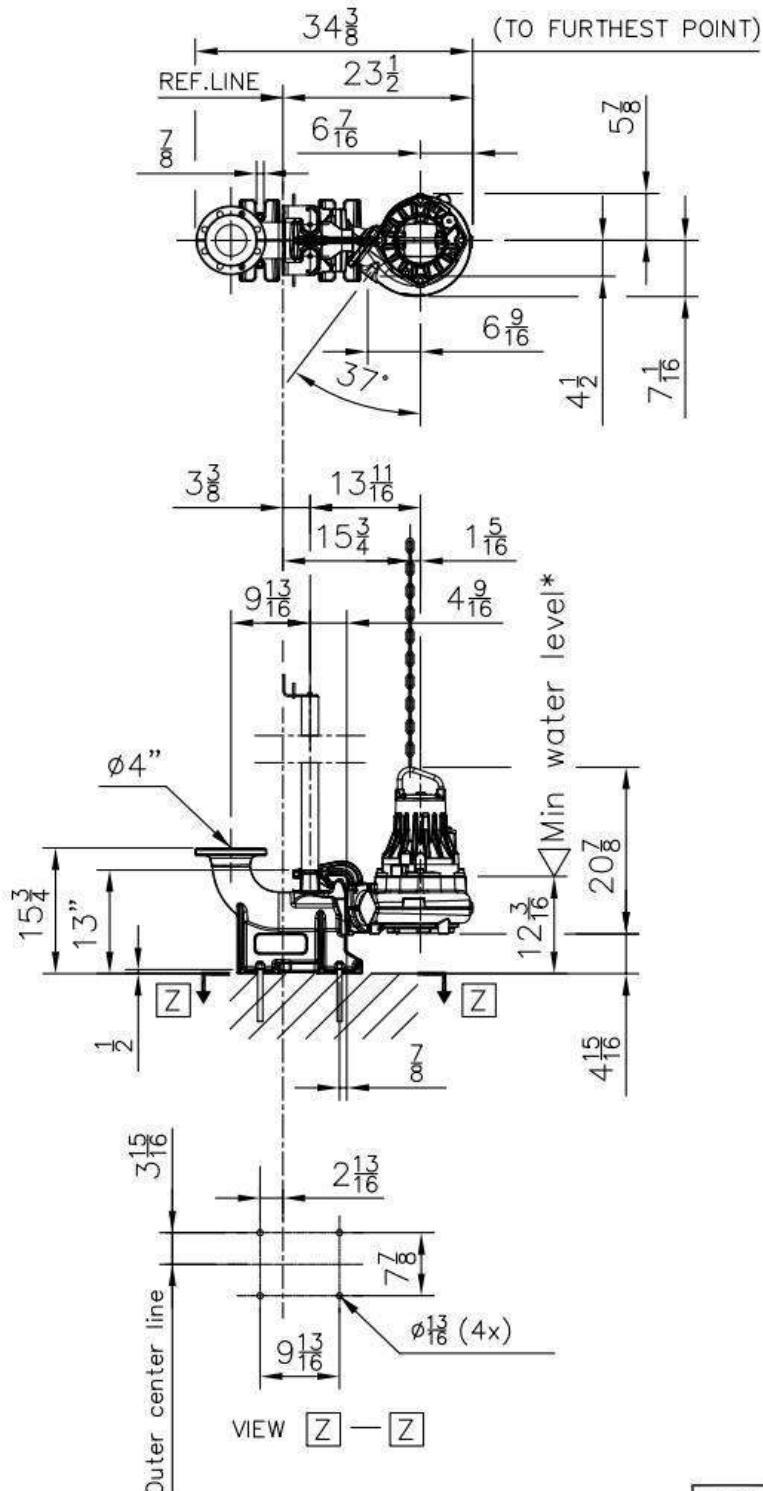
Flow	Shaft power (P2)
217.17 USgpm	2.52 Hp
Head	NPSHR
25.15 ft	13.9 ft
Overall Efficiency (η_o)	Flow To BEP Ratio
42.91 %	62.83 %
Pump Efficiency (η_p)	
54.77 %	
Input Power (P1)	
3.22 Hp	


Fluid and Operating Conditions

Fluid Type	Density
Water	62.43 lb/ft ³
Fluid Temperature	Dynamic Viscosity
39.2 °F	1.57 cP
Specific Gravity	Fluid Vapor Pressure
1	0.27 feet
Atmospheric Pressure	
33.91 feet	
Elevation	
0 ft	
Ambient Temperature	
68 °F	
NPSH Available	
33.68 ft	
Submergence	
0 ft	

Design Curve

Rated Speed	BEP Flow
60 Hz	345.66 USgpm
Max Flow	BEP Head
575.48 USgpm	19.54 ft
H@QMin	Max P2
36.23 ft	2.83 Hp
H@QMax	Specific Energy
8.91 ft	184.32 kWh/mGal
BEP	
62.84 %	


NP 3085 MT 3~ Adaptive 462 | Duty Analysis

Nominal (mean) data shown. Under- and over-performance from this data should be expected due to standard manufacturing tolerances. Please consult your local Flygt representative for additional performance guarantees.

Name	Q (1x) [USgpm]	H (1x) [ft]	P2 (1x) [Hp]	Q [USgpm]	H [ft]	P2 [Hp]	ηp [%]	SE [kWh/mGal]	NPSHr [ft]
DP1 @ 1x	217.17	25.15	2.52	217.17	25.15	2.52	54.77	184.32	13.9

NP 3085 MT 3~ Adaptive 462 | Dimensional Data & Drawing

* Consult the IOM for more info

Weight (lbs)	
Pump	Disch
155	80

	NP	3085	MT	Discharge outlet $\phi 4"$ Pump outlet $\phi 3"$ Pump shaft $\phi 1\frac{13}{16}$ Suction inlet $\phi 1\frac{13}{16}$ (4x)	Scale 1:20 Date 250408
	060,070,160,190,900,910,920,930	Drawing number 6601800	Revision 8		

Company	Xylem
Contact	Jared Carpenter
Phone No.	+19805792395
Email	jared.carpenter@xylem.com

N 3085.060/070 SPECIFICATION

REQUIREMENTS

Furnish and install ____ submersible non-clog wastewater pump(s). Each pump shall be equipped with a 3 HP, submersible electric motor connected for operation on 208 volts, 3 phase, 60 hertz, wire service, with 50feet of submersible cable (SUBCAB) suitable for submersible pump applications. The power cable shall be sized according to NEC and ICEA standards and also meet with P-MSHA Approval.

PUMP DESIGN CONFIGURATION (Wet pit installation)

The pump shall be supplied with a mating cast iron 4 inch discharge connection and be capable of delivering 150 GPM at 12 FT. TDH. The pump(s) shall be automatically and firmly connected to the discharge connection, guided by no less than two guide bars extending from the top of the station to the discharge connection. There shall be no need for personnel to enter the wet-well. Sealing of the pumping unit to the discharge connection shall be accomplished by a machined metal to metal watertight contact. Sealing of the discharge interface with a diaphragm, O-ring or profile gasket will not be acceptable. No portion of the pump shall bear directly on the sump floor. Each pump shall be fitted with lifting chain or stainless steel cable. The working load of the lifting system shall be 50% greater than the pump unit weight.

PUMP CONSTRUCTION

Major pump components shall be of grey cast iron, ASTM A-48, Class 35B, with smooth surfaces devoid of blow holes or other irregularities. The lifting handle shall be of stainless steel. All exposed nuts or bolts shall be AISI type 316 stainless steel construction. All metal surfaces coming into contact with the pumpage, other than stainless steel or brass, shall be protected by a factory applied spray coating of acrylic dispersion zinc phosphate primer with a polyester resin paint finish on the exterior of the pump.

Sealing design shall incorporate **metal-to-metal contact** between machined surfaces. Critical mating surfaces where watertight sealing is required shall be machined and fitted with Nitrile or optional Viton rubber O-rings. Fittings will be the result of controlled compression of rubber O-rings in two planes and O-ring contact of four sides without the requirement of a specific torque limit.

Rectangular cross sectioned gaskets requiring specific torque limits to achieve compression shall not be considered as adequate or equal. No secondary sealing compounds, elliptical O-rings, grease or other devices shall be used.

COOLING SYSTEM

Motors are sufficiently cooled by the surrounding environment or pumped media. A water cooling jacket is not required.

CABLE ENTRY SEAL

The cable entry seal design shall preclude specific torque requirements to insure a watertight and submersible seal. The cable entry shall consist of a single cylindrical elastomer grommet, flanked by washers, all having a close tolerance fit against the cable outside diameter and the entry inside diameter and compressed by the body containing a strain relief function, separate from the function of sealing the cable. The assembly shall provide ease of changing the cable when necessary using the same entry seal.

MOTOR

The pump motor shall be a NEMA B design, induction type with a squirrel cage rotor, shell type design, housed in an air filled, watertight chamber. The stator windings shall be insulated with

moisture resistant Class H insulation rated for 180°C (356°F). The stator shall be insulated by the trickle impregnation method using Class H monomer-free polyester resin resulting in a winding fill factor of at least 95%. The motor shall be inverter duty rated in accordance with NEMA MG1, Part 31. The stator shall be heat-shrink fitted into the cast iron stator housing. The use of multiple step dip and bake-type stator insulation process is not acceptable. The use of bolts, pins or other fastening devices requiring penetration of the stator housing is not acceptable. The motor shall be designed for continuous duty handling pumped media of 40°C (104°F) and capable of no less than 30 evenly spaced starts per hour. The rotor bars and short circuit rings shall be made of cast aluminum. Thermal switches set to open at 125°C (260°F) shall be embedded in the stator end coils to monitor the temperature of each phase winding. These thermal switches shall be used in conjunction with and supplemental to external motor overload protection and shall be connected to the control panel. The motor and the pump shall be produced by the same manufacturer.

The combined service factor (combined effect of voltage, frequency and specific gravity) shall be a minimum of 1.15. The motor shall have a voltage tolerance of plus or minus 10%. The motor shall be designed for operation up to 40°C (104°F) ambient and with a temperature rise not to exceed 80°C. A performance chart shall be provided upon request showing curves for torque, current, power factor, input/output kW and efficiency. This chart shall also include data on starting and no-load characteristics. The motor horsepower shall be adequate so that the pump is non-overloading throughout the entire pump performance curve from shut-off through run-out. The motor shall be capable of continuous submergence underwater without loss of watertight integrity to a depth of 65 feet or greater.

The power cable shall be sized according to the NEC and ICEA standards and shall be of sufficient length to reach the junction box without the need of any splices. The outer jacket of the cable shall be oil resistant chlorinated polyethylene rubber. The cable shall be capable of continuous submergence underwater without loss of watertight integrity to a depth of 65 feet or greater.

Optional - Shielded Power Cable:

The power cable shall be sized according to the NEC and ICEA standards and shall be of sufficient length to reach the junction box without the need of any splices. The power cable shall be of a shielded design in which an overall tinned copper shield is included and each individual phase conductor is shielded with an aluminum coated foil wrap. The outer jacket of the cable shall be oil resistant chlorinated polyethylene rubber. The cable shall be capable of continuous submergence underwater without loss of watertight integrity to a depth of 65 feet or greater.

This cable is required for use with Flygt SmartRun™ intelligent controls.

BEARINGS

The pump shaft shall rotate on two bearings. Motor bearings shall be permanently grease lubricated. The upper bearing shall be a single deep groove ball bearing. The lower bearing shall be a two row angular contact bearing to compensate for axial thrust and radial forces. **Single row lower bearings are not acceptable.** The minimum L₁₀ bearing life shall be 50,000 hours at any usable portion of the pump curve.

MECHANICAL SEAL

Each pump shall be provided with a tandem mechanical shaft seal system consisting of two totally independent seal assemblies. The seals shall operate in a lubricant reservoir that hydro-dynamically lubricates the lapped seal faces at a constant rate. The lower, primary seal unit, located between the pump and the lubricant chamber, shall contain one stationary and one positively driven rotating, corrosion and abrasion resistant **tungsten-carbide** ring. The upper, secondary seal unit, located between the lubricant chamber and the motor housing, shall contain

one stationary and one positively driven rotating, corrosion and abrasion resistant tungsten-carbide seal ring.

Each seal interface shall be held in contact by its own spring system. The seals shall require neither maintenance nor adjustment nor **depend on direction of rotation for sealing**. The position of both mechanical seals shall depend on the shaft. Mounting of the lower mechanical seal on the impeller hub will not be acceptable. For special applications, other seal face materials shall be available.

The following seal types shall not be considered acceptable or equal to the dual independent seal specified: shaft seals without positively driven rotating members, or conventional double mechanical seals containing either a common single or double spring acting between the upper and lower seal faces. No system requiring a pressure differential to offset pressure and to effect sealing shall be used.

Each pump shall be provided with a lubricant chamber for the shaft sealing system. The lubricant chamber shall be designed to prevent overfilling and to provide lubricant expansion capacity. The drain and inspection plug, with positive anti-leak seal shall be easily accessible from the outside. The seal system shall not rely upon the pumped media for lubrication. **The motor shall be able to operate dry without damage while pumping under load.**

Where a seal cavity is present in the seal chamber, the area about the exterior of the lower mechanical seal in the cast iron housing shall have cast in an integral concentric spiral groove. This groove shall protect the seals by causing abrasive particulate entering the seal cavity to be forced out away from the seal due to centrifugal action.

Seal lubricant shall be non-hazardous.

PUMP SHAFT

Pump and motor shaft shall be the same unit. The pump shaft is an extension of the motor shaft. Couplings shall not be acceptable. The pump shaft shall be stainless steel – ASTM A479 S43100-T.

If a shaft material of lower quality than stainless steel – ASTM A479 S43100-T is used, a shaft sleeve of stainless steel – ASTM A479 S43100-T is used to protect the shaft material. However, shaft sleeves only protect the shaft around the lower mechanical seal. No protection is provided in the lubricant housing and above. Therefore, the use of stainless steel sleeves will not be considered equal to stainless steel shafts.

IMPELLER (Adaptive)

The impeller shall be of Hard-Iron™ (ASTM A-532 (Alloy III A) 25% chrome cast iron), dynamically balanced, semi-open, multi-vane, back-swept, non-clog design. The impeller vane leading edges shall be mechanically self-cleaned upon each rotation as they pass across a spiral groove located on a replaceable insert ring.

The impeller shall have vanes hardened to Rc 45 and shall be capable of handling solids, fibrous materials, heavy sludge and other matter found in waste water. The screw shape of the impeller inlet shall provide an inducing effect for the handling of sludge and rag-laden wastewater. The impeller shall be capable of momentarily moving axially upwards a distance of 15mm/0.6-in. to allow larger debris to pass through and immediately return to normal operating position.

VOLUTE / SUCTION COVER

The pump volute shall be a single piece grey cast iron, ASTM A-48, Class 35B, non-concentric design with smooth passages of sufficient size to pass any solids that may enter the impeller. Minimum inlet and discharge size shall be as specified. The volute shall have a replaceable suction cover insert ring in which are cast spiral-shaped, sharp-edged groove(s). The spiral groove(s) shall provide trash release pathways and sharp edge(s) across which each impeller vane leading edge shall cross during rotation so to remain unobstructed. The insert ring shall be cast of Hard-Iron™ (ASTM A-532 (Alloy III A) 25% chrome cast iron) and provide effective sealing between the multi-vane semi-open impeller and the volute housing.

PROTECTION

All stators shall incorporate thermal switches in series to monitor the temperature of each phase winding. The thermal switches shall open at 125°C (260°F), stop the motor and activate an alarm.

A leakage sensor shall be available as an option to detect water in the stator chamber. The Float Leakage Sensor (FLS) is a small float switch used to detect the presence of water in the stator chamber. When activated, the FLS will stop the motor and send an alarm both local and/or remote. **USE OF VOLTAGE SENSITIVE SOLID STATE SENSORS AND TRIP TEMPERATURE ABOVE 125°C (260°F) SHALL NOT BE ALLOWED.**

The thermal switches and FLS shall be connected to a Mini CAS (Control and Status) monitoring unit. The Mini CAS shall be designed to be mounted in any control panel.

Note: FLS not available in NZ Configurations.

Material selection for wastewater pumps: Raise performance and extend system lifetime

Wastewater can sometimes be both corrosive and abrasive. Selecting the most suitable material for wastewater pumps is therefore crucial to obtaining a reliable, long-lasting and cost-effective operation. This paper provides recommendations for suitable wastewater pump materials and protection for use with different media. It also describes various phenomena associated with corrosion and abrasion.

Background

The increasing complexities in the composition of wastewater are growing. This has made it important to select a pump in the correct material with suitable protection.

The reason for the increased complexity differs depending on geographical area; a few causes are discussed below:

Due to increased labor costs, customers want maintenance-free pump stations. It is therefore more cost-effective to allow the pumps to transport sand over great distances within the system than it is to use vacuum trucks to remove the sand and grit frequently throughout the wastewater network and transport it for disposal.

In some geographical areas, the amount of runoff from streets in cities and towns has increased due to the higher proportion of paved areas. This increase in paved areas contributes to more sand in the system, which in turn leads to a higher degree of abrasive wear on the hydraulic parts of the pumps.

As a result, higher demands are placed on the selection of material as well as the protection of the pump to ensure optimal long-term performance that provides a longer lifetime as well as a sustained high efficiency. This ultimately leads to greater energy savings and a lower total cost of ownership.

It is equally important to understand when it is possible and suitable to use a pump in standard grey iron materials without extra protective measures. In most wastewater

applications this is the recommended solution, while other material choices or extra protection will only increase the cost.

Hydraulic parts of a wastewater pump, available in a wide range of material options.

How wastewater influences pump lifetime

There are several different types of wastewater. Depending on the sewage type, the use of different materials is required in order to extend the life of the pump. Chloride content, pH value, temperature, oxygen content and abrasives are factors that affect the selection of material and protection.

Untreated wastewater does not normally contain dissolved oxygen because the microorganisms use the oxygen to consume the organic material present in the wastewater. If oxygen is present, even in low quantities, unacceptably high levels of corrosion may occur if grey iron and carbon steel are used.

The chloride content in wastewater may vary from anywhere between 10 and 500 mg/l; in some cases, however, it can be higher due to seawater infiltration. As a comparison, the chloride level in the Atlantic Ocean is 19500 mg/l.

The pH value in wastewater typically lies around 7.

In untreated wastewater, abrasive particles are often present; this increases the risk of wear on the hydraulic parts. Material corrosion and wear can cause unplanned breakdowns and operational stops and reduce the useful lifetime of the pump.

Example of a typical wastewater station with propeller pumps.

Impeller after an accelerated wear test in a laboratory.

Wear

Wear is, by definition, the loss of material from a surface. Generally speaking, more than a single wear mechanism might occur at the same time; however, one of the wear mechanisms usually has a dominant effect. Wear due to abrasive particles is common in wastewater. If the velocity in the pump volute is high, water-erosion is accelerated. Pump parts, such as impellers, propellers, suction covers and volutes, that are in direct contact with the pumped media are primarily subject to erosive wear. Wear is not linear proportional to the velocity of the pumped media. For metallic material, the wear is normally proportional to more than the square of the velocity. Tests indicate that an exponent of 2.4 is appropriate ($\text{Wear} = c \cdot V^{2.4}$). In other words, if the velocity increases by 50%, the wear increases 2.6 times.

There is a strong linear relationship between wear resistance and the hardness of the same type of metallic materials (Figure 1). These wear resistance tests have been conducted at the Xylem material laboratory using a specially designed test apparatus, which simulates the actual conditions inside the pump.

Hard-Iron™ has an extremely high wear resistance due to its embedded hard chromium carbides.

Relative wear resistance test in slurry with 20% natural granite sand (Grain size: 0.70 mm)

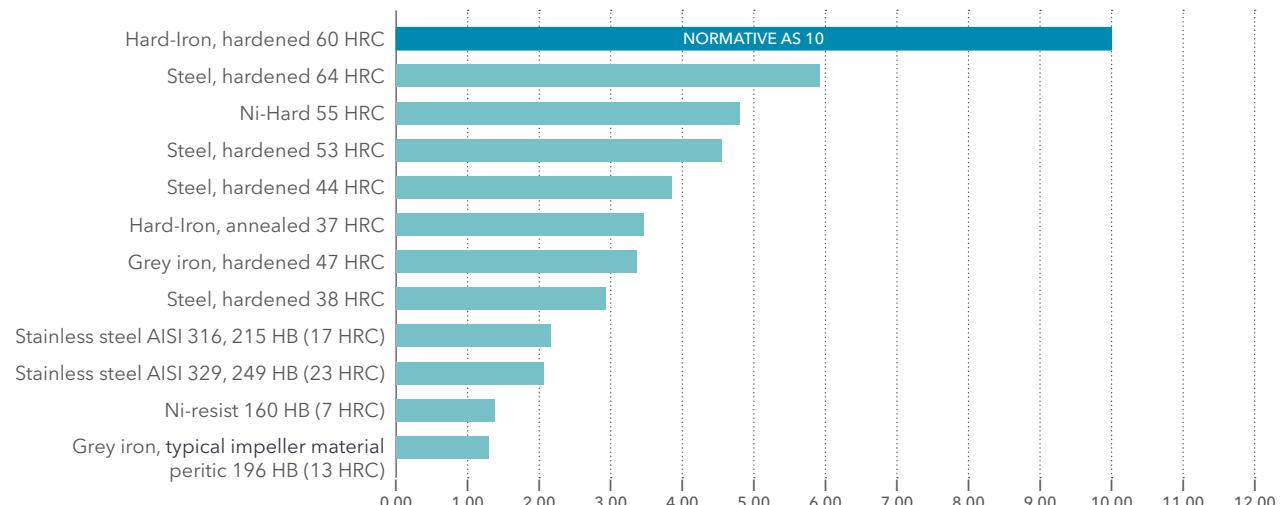


Figure 1: An overview of relative wear resistance of various materials. The graph shows the strong linear relationship between wear resistance and the hardness within the same type of metallic material. This can clearly be seen for steel in different hardness.

The linear relationship between hardness and wear resistance can most clearly be seen with hardened steel. Although these types of steels are made using the same technique and share a common structure, the hardness differs. Grey iron with embedded soft graphite in the structure has a lower wear resistance in the hardened state and in the as-cast state compared to carbon steel with similar hardness. Stainless steel, on the other hand, performs somewhat better than grey iron due to the higher corrosion-resistance properties of stainless steel.

The corrosion rate for oxygen-induced corrosion may be accelerated for many reasons, including high temperature, media with high or low pH values, high oxygen content, or high chloride content.

The most common of these accelerating effects is chloride content. As a rule of thumb, if the chloride level is below 200 mg/l, no additional protective measures are necessary for grey iron and carbon steel.

Types of corrosion

There are numerous types of corrosion phenomena, but general corrosion and erosion-corrosion are the most common for grey iron and carbon steel that come into direct contact with wastewater. Galvanic corrosion is another type commonly associated with aluminum pumps; however, the risk of galvanic corrosion is also significant, for instance, when using stainless steel impellers in wastewater.

General corrosion

General corrosion attacks all types of surfaces but usually occurs at low rates. General corrosion is usually not a problem for components that are cast with thick walls, which protect the function of the pump.

The effects of general corrosion on a wastewater pump that is still functioning after 50 years of use.

Erosion-corrosion

When water flows at high velocities and oxygen erodes the corrosion products from the surface, erosion-corrosion is common. Generally localized to areas with turbulent flow, the attacks are even more severe when gas bubbles and solid particles are present.

Erosion-corrosion damage can be mistaken for cavitation damage. Cavitation can occur if the pump is not working in the correct area of the QH curve or doesn't have enough NPSH. For a correctly applied pump, the risk of cavitation is low. In such cases erosion-corrosion is most likely the cause of damage to the material.

Galvanic corrosion

When two different metals are electrically connected and placed into contact with wastewater that contains chlorides, they form a galvanic cell where the more noble material is cathodic and the less noble anodic. The anodic material is then subject to corrosion.

The rate of corrosion depends upon the:

- Surface area ratio of the cathode to the anode. A bigger anode area compared to the cathode area reduces galvanic effects.
- Magnitude of potential difference (Figure 2). A larger potential difference increases the corrosion rate.
- Conductivity of the liquid. Higher chloride content leads to a higher corrosion rate.

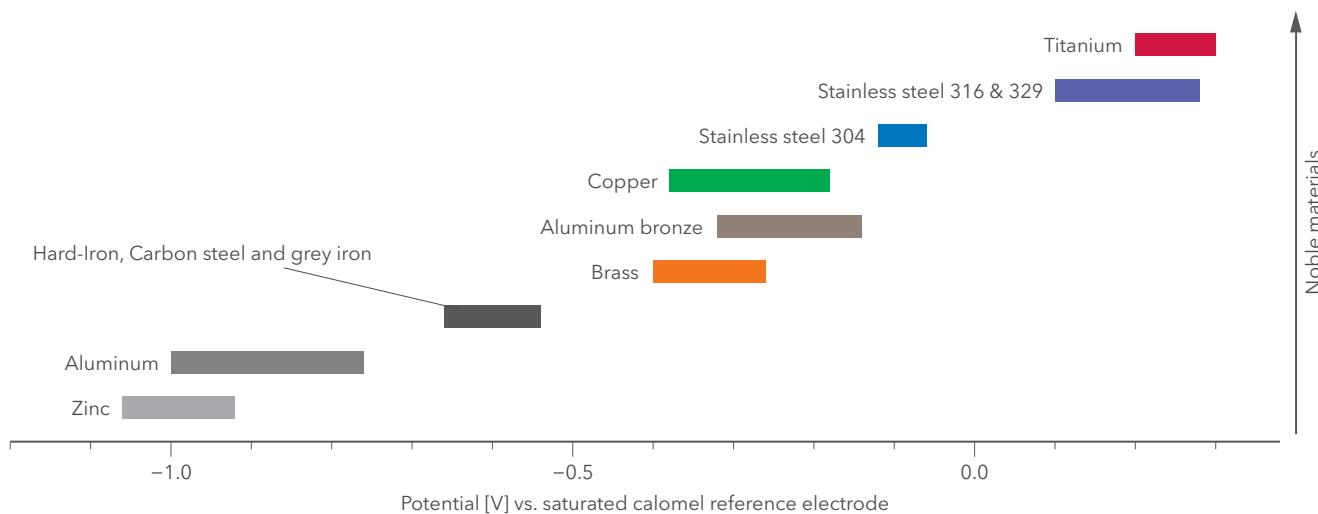


Figure 2: The electropotential of metals can be measured in different water solutions and listed in galvanic series.

Erosion-corrosion of an impeller.

Effects of galvanic corrosion on a lifting bolt with stainless steel chain.

Types of materials

The choice of pump material primarily depends upon the application, and the selection is very important to achieving long pump lifetime. The material in the impeller is the most important factor because the impeller is heavily affected by wear and erosion-corrosion due to its high velocity relative to the liquid.

Frequently used pump materials

Material	Nickel	Chrome	Hardness (hardened state)	Hardness (not hardened state)	Relative wear resistance	Electro-chemical potential	pH limitations	Chloride limitations (Without Zinc anode protection)
Grey iron	0	0%	47 HRC	13 HRC	1.3 (3.3*) *hardened	-0.55 to -0.65	5.5–14	<200 ppm
Stainless steel 316/329	4–11%	17–25%	–	10–20 HRC	2	0.1–0.3	0–14	<500 ppm
Hard-Iron	0	25%	60 HRC	37 HRC	10	-0.55 to -0.65	5–14	200–300 ppm

Figure 3: The most frequently used pump materials along with their respective wear-resistance and corrosion-resistance properties.

Grey iron

Known for its excellent casting properties, grey iron can also be hardened and demonstrates good machining properties. Grey iron is the most common impeller material suitable for most municipal wastewater applications where no special requirements for corrosion protection or wear resistance exist.

Grey iron can be used with wastewater in the pH range of 5.5 to 14 on the condition that the chloride content does not exceed 200 mg/l. If the chloride content exceeds the maximum allowable values, then both the use of zinc anodes and a special epoxy coating is recommended.

Stainless steel

Stainless steel (material type 316/329) demonstrates high resistance towards corrosion, yet has a low wear resistance. Wastewater can at times contain abrasive particles, which limits the suitability of stainless steel in wastewater applications.

If a stainless steel impeller is requested by the customer as preferred material, it is possible to use instead of grey iron; this will, however, have negative effects. If zinc anodes are required because of corrosive media, the anodes will be consumed faster and will need replacement more often than compared to using a grey iron impeller.

Changing a grey iron impeller to a stainless steel impeller also poses the risk of galvanic corrosion. This increases the corrosion potential on the other wetted pump components and surroundings made of less noble materials. Stainless steel is therefore not generally the recommended material in wastewater applications.

Hard-Iron™

Hard-Iron has medium corrosion-resistant and very good wear-resistant properties. Wear tests show that the lifetime of an impeller made of Hard-Iron can be more than three times longer than an impeller made of hardened grey iron.

Hard-Iron is a high-strength cast iron alloy composed of 25% chromium and 3% carbon. During the solidification process, the chromium and carbon transform into very hard carbides. This makes Hard-Iron highly resistant to abrasive wear and erosion-corrosion.

Hard-Iron is more suitable for use in typical wastewater applications than stainless steel. Stainless steel will cause galvanic corrosion of the surrounding materials and reduce the total lifetime of the system.

Accelerated wear tests with sand have been conducted at the Xylem laboratory. Before the tests, the clearance between the impeller and the pump volute measured 0.3 mm. The test results show that impeller wear of stainless steel and grey iron occurs at approximately the same rate. After 50 - 63 hours of accelerated testing, the impeller clearance was measured at 2 mm (Figure 4). An impeller made of Hard-Iron lasts approximately three times longer; after 190 hours of accelerated testing, wear widened the impeller clearance to 2 mm.

Accelerated wear test

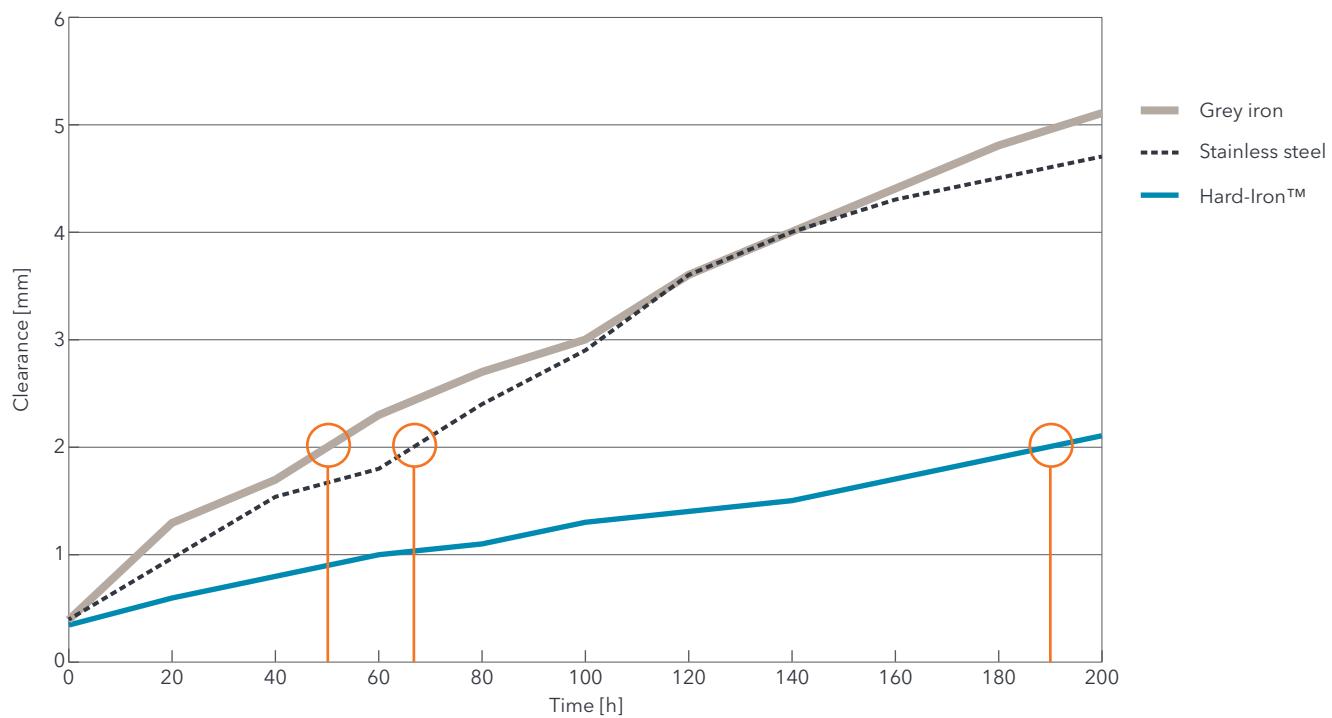


Figure 4: The tests above shows the comparison of material wear. The use of Hard-Iron minimizes wear on pump impellers and prolongs impeller lifetime.

Conclusion

The increasingly complex mixtures of wastewater affect the pump and result in both corrosion and wear in tougher applications. This places higher demands on selecting the right material for the impeller as well as providing proper pump protection such as zinc anodes and protective coatings. As previously mentioned, the choice of material for the pump depends upon the amount of chloride ions and abrasive particles in the pumped media.

The most common wastewater application has conditions of low wear with low amounts of corrosives. Here grey iron as impeller material is the best solution and no extra protection is needed. For high wear conditions,

a Hard-iron impeller is necessary, since it increases the wear resistance three times and will give a long lasting operation. If a high amount of chlorides exists, protection by zinc anodes and special epoxy painting is needed, regardless of impeller material. If a stainless steel impeller is specified, it can be used instead of grey iron, but the risk for galvanic corrosion increases. Stainless steel is therefore not our general recommendation for impeller material in wastewater applications.

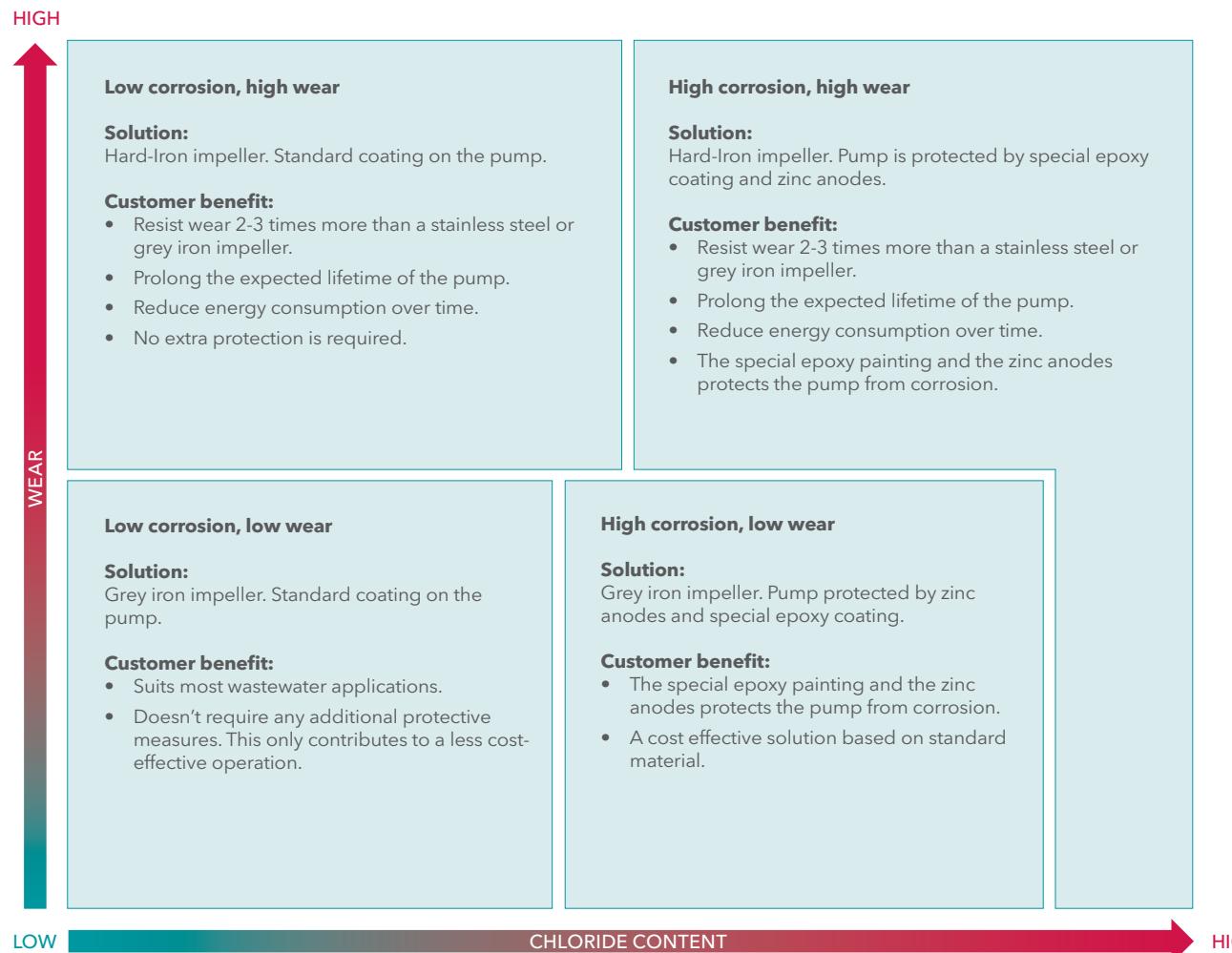


Figure 5: This graph shows recommended impeller materials for grey iron pumps. Other materials may be available but are not recommended for wastewater applications.

Xylem |'zil m|

- 1) The tissue in plants that brings water upward from the roots;
- 2) a leading global water technology company.

We're 12,000 people unified in a common purpose: creating innovative solutions to meet our world's water needs. Developing new technologies that will improve the way water is used, conserved, and re-used in the future is central to our work. We move, treat, analyze, and return water to the environment, and we help people use water efficiently, in their homes, buildings, factories and farms. In more than 150 countries, we have strong, long-standing relationships with customers who know us for our powerful combination of leading product brands and applications expertise, backed by a legacy of innovation.

For more information on how Xylem can help you, go to www.xyleminc.com

Let's Solve Water

Xylem, Inc.
14125 South Bridge Circle
Charlotte, NC 28273
Tel 704.409.9700
Fax 704.295.9080
855-XYL-H2O1 (855-995-4261)
www.xyleminc.com

Flygt is a trademark of Xylem Inc. or one of its subsidiaries.
© 2015 Xylem, Inc. JULY 2015

The Flygt Clog Free Guarantee

FLYGT PUMPS EQUIPPED WITH N-TECHNOLOGY ARE GUARANTEED TO BE CLOG FREE

Flygt guarantees that its solids-handling pumps, when equipped with impellers utilizing the self-cleaning N-technology, will be free from clogging for 12 months when pumping sewage and wastewater containing solids and debris normally found in domestic wastewater.

Flygt's patented N-technology, now with revolutionary Adaptive N-technology, ensures continuous, trouble free pumping while delivering sustained efficiency regardless of the wastewater challenges, handling stringy fibrous materials and modern trash.

Flygt brand solids-handling pumps equipped with N-technology are guaranteed to operate clog free for 12 months. It's our Clog Free Operations Guarantee.

Contact your authorized Flygt representative for details.

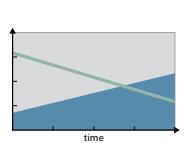
Clog Free Guarantee

The guarantee is extended to the original owner of the pumps for a period of 12 months from the date of start-up of the equipment by the local authorized Flygt representative or distributor.

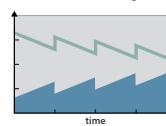
Should the Flygt N-Pump Impeller clog with typical solids and/or debris normally found in domestic wastewater during this period, an authorized representative will reimburse the owner for reasonable cost to remove the pump, clear the obstruction and reinstall the affected pump unit.

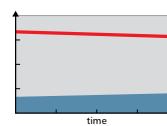
25% Energy Savings Guarantee

Replace a competitor's non-clog, solids handling pump with a Flygt N-Pump and you will use a minimum of 25% less energy for pumping. We guarantee it.


This guarantee applies to all retrofit applications (lift stations and treatment plants) with solids-bearing liquids. If you do not see at least 25% in pump energy savings, we will refund the difference between the actual pump energy savings and the expected 25% savings for a 3-year period of operation.

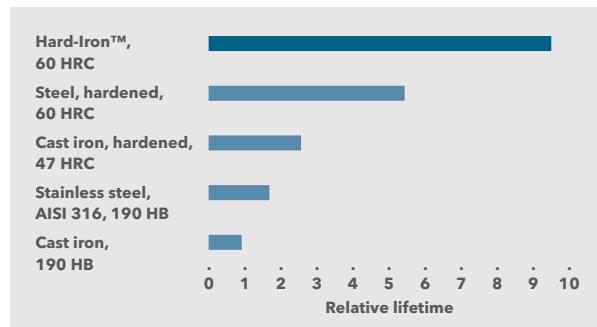
The self-cleaning concept


All Flygt N-pumps have the same self-cleaning performance regardless of duty point.


A. Conventional wastewater pump

B. Conventional pump running intermittently

C. Flygt N-pump


Hydraulic efficiency
Sustained high efficiency
Energy consumption

Flygt Hard Iron Advantage

Less erosion, less maintenance.

Hard-Iron (60HRC) is suitable for the toughest wastewater applications with abrasives. In accelerated wear tests, the lifetime of a Hard Iron impeller was more than three times longer than an impeller made of hardened cast iron. Choosing Hard Iron reduces time and money spent on maintenance.


Contact your local Flygt representative for details.

Flygt is a brand of Xylem, whose 12,000 employees are addressing the most complex issues in the global water market.

www.xyleminc.com

Xylem, Inc.
14125 South Bridge Circle
Charlotte, NC 28273
Tel 704.409.9700
Fax 704.295.9080

